34 research outputs found

    Evaluating housing quality, health and safety using an Internet-based data collection and response system: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Typically housing and health surveys are not integrated together and therefore are not representative of population health or national housing stocks. In addition, the existing channels for distributing information about housing and health issues to the general public are limited. The aim of this study was to develop a data collection and response system that would allow us to assess the Finnish housing stock from the points of view of quality, health and safety, and also to provide a tool to distribute information about important housing health and safety issues.</p> <p>Methods</p> <p>The data collection and response system was tested with a sample of 3000 adults (one per household), who were randomly selected from the Finnish Population Register Centre. Spatial information about the exact location of the residences (i.e. coordinates) was included in the database inquiry. People could participate either by completing and returning a paper questionnaire or by completing the same questionnaire via the Internet. The respondents did not receive any compensation for their time in completing the questionnaire.</p> <p>Results</p> <p>This article describes the data collection and response system and presents the main results of the population-based testing of the system. A total of 1312 people (response rate 44%) answered the questionnaire, though only 80 answered via the Internet. A third of the respondents had indicated they wanted feedback. Albeit a majority (>90%) of the respondents reported being satisfied or quite satisfied with their residence, there were a number of prevalent housing issues identified that can be related to health and safety.</p> <p>Conclusions</p> <p>The collected database can be used to evaluate the quality of the housing stock in terms of occupant health and safety, and to model its association with occupant health and well-being. However, it must be noted that all the health outcomes gathered in this study are self-reported. A follow-up study is needed to evaluate whether the occupants acted on the feedback they received. Relying solely on an Internet-based questionnaire for collecting data would not appear to provide an adequate response rate for random population-based surveys at this point in time.</p

    A Single-Stranded DNA Aptamer That Selectively Binds to Staphylococcus aureus Enterotoxin B

    Get PDF
    The bacterium Staphylococcus aureus is a common foodborne pathogen capable of secreting a cocktail of small, stable, and strain-specific, staphylococcal enterotoxins (SEs). Staphylococcal food poisoning (SFP) results when improperly handled food contaminated with SEs is consumed. Gastrointestinal symptoms of SFP include emesis, diarrhea and severe abdominal pain, which manifest within hours of ingesting contaminated food. Immuno-affinity based methods directly detect, identify, and quantify several SEs within a food or clinical sample. However, the success of these assays depends upon the availability of a monoclonal antibody, the development of which is non-trivial and costly. The current scope of the available immuno-affinity based methods is limited to the classical SEs and does not encompass all of the known or emergent SEs. In contrast to antibodies, aptamers are short nucleic acids that exhibit high affinity and specificity for their targets without the high-costs and ethical concerns of animal husbandry. Further, researchers may choose to freely distribute aptamers and develop assays without the proprietary issues that increase the per-sample cost of immuno-affinity assays. This study describes a novel aptamer, selected in vitro, with affinity to staphylococcal enterotoxin B (SEB) that may be used in lieu of antibodies in SE detection assays. The aptamer, designated APTSEB1, successfully isolates SEB from a complex mixture of SEs with extremely high discrimination. This work sets the foundation for future aptamer and assay development towards the entire family of SEs. The rapid, robust, and low-cost identification and quantification of all of the SEs in S. aureus contaminated food is essential for food safety and epidemiological efforts. An in vitro generated library of SE aptamers could potentially allow for the comprehensive and cost-effective analysis of food samples that immuno-affinity assays currently cannot provide

    Role of Cancer Microenvironment in Metastasis: Focus on Colon Cancer

    Get PDF
    One person on three will receive a diagnostic of cancer during his life. About one third of them will die of the disease. In most cases, death will result from the formation of distal secondary sites called metastases. Several events that lead to cancer are under genetic control. In particular, cancer initiation is tightly associated with specific mutations that affect proto-oncogenes and tumour suppressor genes. These mutations lead to unrestrained growth of the primary neoplasm and a propensity to detach and to progress through the subsequent steps of metastatic dissemination. This process depends tightly on the surrounding microenvironment. In fact, several studies support the point that tumour development relies on a continuous cross-talk between cancer cells and their cellular and extracellular microenvironments. This signaling cross-talk is mediated by transmembrane receptors expressed on cancer cells and stromal cells. The aim of this manuscript is to review how the cancer microenvironment influences the journey of a metastatic cell taking liver invasion by colorectal cancer cells as a model

    Doubly heterozygous LMNA and TTN mutations revealed by exome sequencing in a severe form of dilated cardiomyopathy

    Get PDF
    Familial dilated cardiomyopathy (DCM) is a heterogeneous disease; although 30 disease genes have been discovered, they explain only no more than half of all cases; in addition, the causes of intra-familial variability in DCM have remained largely unknown. In this study, we exploited the use of whole-exome sequencing (WES) to investigate the causes of clinical variability in an extended family with 14 affected subjects, four of whom showed particular severe manifestations of cardiomyopathy requiring heart transplantation in early adulthood. This analysis, followed by confirmative conventional sequencing, identified the mutation p.K219T in the lamin A/C gene in all 14 affected patients. An additional variant in the gene for titin, p.L4855F, was identified in the severely affected patients. The age for heart transplantation was substantially less for LMNA:p.K219T/TTN:p.L4855F double heterozygotes than that for LMNA:p.K219T single heterozygotes. Myocardial specimens of doubly heterozygote individuals showed increased nuclear length, sarcomeric disorganization, and myonuclear clustering compared with samples from single heterozygotes. In conclusion, our results show that WES can be used for the identification of causal and modifier variants in families with variable manifestations of DCM. In addition, they not only indicate that LMNA and TTN mutational status may be useful in this family for risk stratification in individuals at risk for DCM but also suggest titin as a modifier for DCM

    Transcriptional profile of breast muscle in heat stressed layers is similar to that of broiler chickens at control temperature

    Get PDF
    Abstract Background In recent years, the commercial importance of changes in muscle function of broiler chickens and of the corresponding effects on meat quality has increased. Furthermore, broilers are more sensitive to heat stress during transport and at high ambient temperatures than smaller egg-laying chickens. We hypothesised that heat stress would amplify muscle damage and expression of genes that are involved in such changes and, thus, lead to the identification of pathways and networks associated with broiler muscle and meat quality traits. Broiler and layer chickens were exposed to control or high ambient temperatures to characterise differences in gene expression between the two genotypes and the two environments. Results Whole-genome expression studies in breast muscles of broiler and layer chickens were conducted before and after heat stress; 2213 differentially-expressed genes were detected based on a significant (P < 0.05) genotype × treatment interaction. This gene set was analysed with the BioLayout Express3D and Ingenuity Pathway Analysis software and relevant biological pathways and networks were identified. Genes involved in functions related to inflammatory reactions, cell death, oxidative stress and tissue damage were upregulated in control broilers compared with control and heat-stressed layers. Expression of these genes was further increased in heat-stressed broilers. Conclusions Differences in gene expression between broiler and layer chickens under control and heat stress conditions suggest that damage of breast muscles in broilers at normal ambient temperatures is similar to that in heat-stressed layers and is amplified when broilers are exposed to heat stress. The patterns of gene expression of the two genotypes under heat stress were almost the polar opposite of each other, which is consistent with the conclusion that broiler chickens were not able to cope with heat stress by dissipating their body heat. The differentially expressed gene networks and pathways were consistent with the pathological changes that are observed in the breast muscle of heat-stressed broilers
    corecore