92 research outputs found
Surface exposure of phosphatidylserine during apoptosis of rat thymocytes precedes nuclear changes
Cell surface exposure of phosphatidylserine (PS) during apoptosis serves recognition and removal of the dying cell by phagocytes. Loss of phospholipid asymmetry and PS exposure is investigated by immunocytochemistry and related to morphological changes. Loss of membrane asymmetry was determined on dexamethasone-treated rat thymocytes using the PS specific probe annexin V. Thymocytes incubated in the presence of dexamethasone were studied in time series during the execution of the apoptotic program. Thymocytes first start to expose PS at their cell surface. At this initial stage the barrier function of the plasma membrane remains intact. At a later stage the plasma membrane becomes leaky for compounds like propidium iodide and subsequently the cell disintegrates into apoptotic bodies. Microscopical evaluation of dexamethasone-treated thymocytes showed that the cells with an apoptotic morphology all bound annexin V. The cells with a normal viable morphology lacked annexin V binding except for those cells that started to shed small vesicles. These vesicles were positive for annexin V, indicating a local disturbance of the phospholipid asymmetry. The local exposure of PS is considered to be a very early event of apoptosis, preceding the full sequence of morphological changes at the ultrastructural level
Cryo-electron tomography of cells: connecting structure and function
Cryo-electron tomography (cryo-ET) allows the visualization of cellular structures under close-to-life conditions and at molecular resolution. While it is inherently a static approach, yielding structural information about supramolecular organization at a certain time point, it can nevertheless provide insights into function of the structures imaged, in particular, when supplemented by other approaches. Here, we review the use of experimental methods that supplement cryo-ET imaging of whole cells. These include genetic and pharmacological manipulations, as well as correlative light microscopy and cryo-ET. While these methods have mostly been used to detect and identify structures visualized in cryo-ET or to assist the search for a feature of interest, we expect that in the future they will play a more important role in the functional interpretation of cryo-tomograms
Opinion: hazards faced by macromolecules when confined to thin aqueous films
Samples prepared for single-particle electron cryo-microscopy (cryo-EM) necessarily have a very high surface-to-volume ratio during the short period of time between thinning and vitrification. During this time, there is an obvious risk that macromolecules of interest may adsorb to the air-water interface with a preferred orientation, or that they may even become partially or fully unfolded at the interface. In addition, adsorption of macromolecules to an air-water interface may occur even before thinning. This paper addresses the question whether currently used methods of sample preparation might be improved if one could avoid such interfacial interactions. One possible way to do so might be to preemptively form a surfactant monolayer over the air-water interfaces, to serve as a structure-friendly slide and coverslip. An alternative is to immobilize particles of interest by binding them to some type of support film, which-to continue using the analogy-thus serves as a slide. In this case, the goal is not only to prevent the particles of interest from diffusing into contact with the air-water interface but also to increase the number of particles seen in each image. In this direction, it is natural to think of developing various types of affinity grids as structure-friendly alternatives to thin carbon films. Perhaps ironically, if precautions are not taken against adsorption of particles to air-water interfaces, sacrificial monolayers of denatured protein may take the roles of slide, coverslip, or even both
Development of Transgenic Cloned Pig Models of Skin Inflammation by DNA Transposon-Directed Ectopic Expression of Human β1 and α2 Integrin
Integrins constitute a superfamily of transmembrane signaling receptors that play pivotal roles in cutaneous homeostasis by modulating cell growth and differentiation as well as inflammatory responses in the skin. Subrabasal expression of integrins α2 and/or β1 entails hyperproliferation and aberrant differentiation of keratinocytes and leads to dermal and epidermal influx of activated T-cells. The anatomical and physiological similarities between porcine and human skin make the pig a suitable model for human skin diseases. In efforts to generate a porcine model of cutaneous inflammation, we employed the Sleeping Beauty DNA transposon system for production of transgenic cloned Göttingen minipigs expressing human β1 or α2 integrin under the control of a promoter specific for subrabasal keratinocytes. Using pools of transgenic donor fibroblasts, cloning by somatic cell nuclear transfer was utilized to produce reconstructed embryos that were subsequently transferred to surrogate sows. The resulting pigs were all transgenic and harbored from one to six transgene integrants. Molecular analyses on skin biopsies and cultured keratinocytes showed ectopic expression of the human integrins and localization within the keratinocyte plasma membrane. Markers of perturbed skin homeostasis, including activation of the MAPK pathway, increased expression of the pro-inflammatory cytokine IL-1α, and enhanced expression of the transcription factor c-Fos, were identified in keratinocytes from β1 and α2 integrin-transgenic minipigs, suggesting the induction of a chronic inflammatory phenotype in the skin. Notably, cellular dysregulation obtained by overexpression of either β1 or α2 integrin occurred through different cellular signaling pathways. Our findings mark the creation of the first cloned pig models with molecular markers of skin inflammation. Despite the absence of an overt psoriatic phenotype, these animals may possess increased susceptibility to severe skin damage-induced inflammation and should be of great potential in studies aiming at the development and refinement of topical therapies for cutaneous inflammation including psoriasis
Global and Regional Differences in Brain Anatomy of Young Children Born Small for Gestational Age
In children who are born small for gestational age (SGA), an adverse intrauterine environment has led to underdevelopment of both the body and the brain. The delay in body growth is (partially) restored during the first two years in a majority of these children. In addition to a negative influence on these physical parameters, decreased levels of intelligence and cognitive impairments have been described in children born SGA. In this study, we used magnetic resonance imaging to examine brain anatomy in 4- to 7-year-old SGA children with and without complete bodily catch-up growth and compared them to healthy children born appropriate for gestational age. Our findings demonstrate that these children strongly differ on brain organisation when compared with healthy controls relating to both global and regional anatomical differences. Children born SGA displayed reduced cerebral and cerebellar grey and white matter volumes, smaller volumes of subcortical structures and reduced cortical surface area. Regional differences in prefrontal cortical thickness suggest a different development of the cerebral cortex. SGA children with bodily catch-up growth constitute an intermediate between those children without catch-up growth and healthy controls. Therefore, bodily catch-up growth in children born SGA does not implicate full catch-up growth of the brain
Unraveling genetic predisposition to familial or early onset gastric cancer using germline whole-exome sequencing
Recognition of individuals with a genetic predisposition to gastric cancer (GC) enables preventive measures. However, the underlying cause of genetic susceptibility to gastric cancer remains largely unexplained. We performed germline whole-exome sequencing on leukocyte DNA of 54 patients from 53 families with genetically unexplained diffuse-type and intestinal-type GC to identify novel GC-predisposing candidate genes. As young age at diagnosis and familial clustering are hallmarks of genetic tumor susceptibility, we selected patients that were diagnosed below the age of 35, patients from families with two cases of GC at or below age 60 and patients from families with three GC cases at or below age 70. All included individuals were tested negative for germline CDH1 mutations before or during the study. Variants that were possibly deleterious according to in silico predictions were filtered using several independent approaches that were based on gene function and gene mutation burden in controls. Despite a rigorous search, no obvious candidate GC predisposition genes were identified. This negative result stresses the importance of future research studies in large, homogeneous cohorts
Assessing treatment outcomes in multiple sclerosis trials and in the clinical setting
Increasing numbers of drugs are being developed for the treatment of multiple sclerosis (MS). Measurement of relevant outcomes is key for assessing the efficacy of new drugs in clinical trials and for monitoring responses to disease-modifying drugs in individual patients. Most outcomes used in trial and clinical settings reflect either clinical or neuroimaging aspects of MS (such as relapse and accrual of disability or the presence of visible inflammation and brain tissue loss, respectively). However, most measures employed in clinical trials to assess treatment effects are not used in routine practice. In clinical trials, the appropriate choice of outcome measures is crucial because the results determine whether a drug is considered effective and therefore worthy of further development; in the clinic, outcome measures can guide treatment decisions, such as choosing a first-line disease-modifying drug or escalating to second-line treatment. This Review discusses clinical, neuroimaging and composite outcome measures for MS, including patient-reported outcome measures, used in both trials and the clinical setting. Its aim is to help clinicians and researchers navigate through the multiple options encountered when choosing an outcome measure. Barriers and limitations that need to be overcome to translate trial outcome measures into the clinical setting are also discussed
Variation in neurosurgical management of traumatic brain injury: A survey in 68 centers participating in the CENTER-TBI study
Background Neurosurgical management of traumatic brain injury (TBI) is challenging, with only low-quality evidence. We aimed to explore differences in neurosurgical strategies for TBI across Europe. Methods A survey was sent to 68 centers participating in the Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. The questionnaire contained 21 questions, including the decision when to operate (or not) on traumatic acute subdural hematoma (ASDH) and intracerebral hematoma (ICH), and when to perform a decompressive craniectomy (DC) in raised intracranial pressure (ICP). Results The survey was completed by 68 centers (100%). On average, 10 neurosurgeons work in each trauma center. In all centers, a neurosurgeon was available within 30 min. Forty percent of responders reported a thickness or volume threshold for evacuation of an ASDH. Most responders (78%) decide on a primary DC in evacuating an ASDH during the operation, when swelling is present. For ICH, 3% would perform an evacuation directly to prevent secondary deterioration and 66% only in case of clinical deterioration. Most respondents (91%) reported to consider a DC for refractory high ICP. The reported cut-off ICP for DC in refractory high ICP, however, differed: 60% uses 25 mmHg, 18% 30 mmHg, and 17% 20 mmHg. Treatment strategies varied substantially between regions, specifically for the threshold for ASDH surgery and DC for refractory raised ICP. Also within center variation was present: 31% reported variation within the hospital for inserting an ICP monitor and 43% for evacuating mass lesions. Conclusion Despite a homogeneous organization, considerable practice variation exists of neurosurgical strategies for TBI in Europe. These results provide an incentive for comparative effectiveness research to determine elements of effective neurosurgical care
- …