2,126 research outputs found
Modelling Turbulent Flow of Superfluid <sup>4</sup>He Past a Rough Solid Wall in the <em>T</em>= 0 Limit
\ua9 The Author(s) 2024.We present a numerical study, using the vortex filament model, of vortex tangles in a flow of pure superfluid 4He in the T=0 limit through a channel of width D=1 mm for various applied velocities V. The flat channel walls are assumed to be microscopically rough such that vortices terminating at the walls are permanently pinned; vortices are liberated from their pinned ends exclusively through self-reconnection with their images. Sustained tangles were observed, for a period of 80 s, above the critical velocity Vc∼0.20 cm s-1=20κD. The coarse-grained velocity profile was akin to a classical parabolic profile of the laminar Poiseuille flow, albeit with a nonzero slip velocity ∼ 0.20 cm s-1 at the walls. The friction force was found to be proportional to the applied velocity. The effective kinematic viscosity was ν′∼0.1κ, and effective Reynolds numbers within Re′<200. The fraction of the polarised vortex length varied between zero in the middle of the channel and ∼ 60% within the shear flow regions ∼D/4 from the walls. Therefore, we studied a state of statically polarised ultraquantum (Vinen) turbulence fuelled at short length scales by vortex reconnections, including those with vortex images due to the relative motion between the vortex tangle and the pinning rough surface
Substitution of Ti3+ and Ti4+ in hibonite (CaAl12O19)
The structures of eight synthetic samples of hibonite, with variable Ti oxidation state and Ti concentration (2.4–15.9 wt% TiO2) that span the range reported for natural hibonite found in meteorites, were determined by Rietveld refinements of neutron powder diffraction data. Ti3+ was found to exclusively occupy the octahedral face-sharing M4 site irrespective of the presence or absence of Ti4+. Ti4+ partitions between the trigonal bipyramidal M2 site and the M4 site. The ratio (Ti4+ on M2):(Ti4+ on M4) appears to be constant for all the samples, with an average of 0.18(2) irrespective of the concentrations of Ti3+ and Ti4+. These substitutional sites were shown to be the most stable configurations for Ti in hibonite from calculations using density functional theory, although the predicted preference of Ti4+ for M4 over M2 is not as strong as is observed. This is attributed to the different Ti contents of the experimental and calculated structures and suggests that the Ti site occupancies might change between these concentrations. Furthermore, it is shown that Ti has a preference to occupy neighboring M4 sites such that Ti-Ti interactions occur with stabilization energies of 83 kJ/mol for Ti3+-Ti3+ and at least 15 kJ/mol for Ti4+-Ti4+. Features in optical spectroscopy and electron spin resonance data from meteoritic and synthetic hibonites that have been used to infer Ti3+/Ti4+ are shown to actually derive from these Ti-Ti interactions. The amount of Ti4+ in hibonite can be determined from the unit-cell parameters if ∑Ti is determined independently. Ti3+/Ti4+ in hibonite may record the oxygen fugacity (fO2) of the early solar nebula, however, the existence of Ti3+-Ti3+ and Ti4+-Ti4+ interactions and the potential for Ti4+-Ti3+ interactions need to be considered when interpreting spectroscopic data in terms of Ti valence state and fO2. Hibonite as a single-mineral oxybarometer must be used with caution due to the potential role of crystal chemistry (including Ti-Ti interactions) to stabilize Ti oxidation states independently of fO2
Imaging and Dynamics of Light Atoms and Molecules on Graphene
Observing the individual building blocks of matter is one of the primary
goals of microscopy. The invention of the scanning tunneling microscope [1]
revolutionized experimental surface science in that atomic-scale features on a
solid-state surface could finally be readily imaged. However, scanning
tunneling microscopy has limited applicability due to restrictions, for
example, in sample conductivity, cleanliness, and data aquisition rate. An
older microscopy technique, that of transmission electron microscopy (TEM) [2,
3] has benefited tremendously in recent years from subtle instrumentation
advances, and individual heavy (high atomic number) atoms can now be detected
by TEM [4 - 7] even when embedded within a semiconductor material [8, 9].
However, detecting an individual low atomic number atom, for example carbon or
even hydrogen, is still extremely challenging, if not impossible, via
conventional TEM due to the very low contrast of light elements [2, 3, 10 -
12]. Here we demonstrate a means to observe, by conventional transmision
electron microscopy, even the smallest atoms and molecules: On a clean
single-layer graphene membrane, adsorbates such as atomic hydrogen and carbon
can be seen as if they were suspended in free space. We directly image such
individual adatoms, along with carbon chains and vacancies, and investigate
their dynamics in real time. These techniques open a way to reveal dynamics of
more complex chemical reactions or identify the atomic-scale structure of
unknown adsorbates. In addition, the study of atomic scale defects in graphene
may provide insights for nanoelectronic applications of this interesting
material.Comment: 9 pages manuscript and figures, 9 pages supplementary informatio
Recommended from our members
Interpretation of ambiguous situations: evidence for a dissociation between social and physical threat in Williams syndrome
There is increasing evidence that Williams syndrome (WS) is associated with elevated anxiety that is non-social in nature, including generalised anxiety and fears. To date very little research has examined the cognitive processes associated with this anxiety. In the present research, attentional bias for non-social threatening images in WS was examined using a dot-probe paradigm. Participants were 16 individuals with WS aged between 13 and 34 years and two groups of typically developing controls matched to the WS group on chronological age and attentional control ability respectively. The WS group exhibited a significant attention bias towards threatening images. In contrast, no bias was found for group matched on attentional control and a slight bias away from threat was found in the chronological age matched group. The results are contrasted with recent findings suggesting that individuals with WS do not show an attention bias for threatening faces and discussed in relation to neuroimaging research showing elevated amygdala activation in response to threatening non-social scenes in WS
Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant
© Gramazio et al.; licensee BioMed Central. 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated
Tyrosine Phosphorylation of the E3 Ubiquitin Ligase TRIM21 Positively Regulates Interaction with IRF3 and Hence TRIM21 Activity
Patients suffering from Systemic Lupus Erythematous (SLE) have elevated type I interferon (IFN) levels which correlate with disease activity and severity. TRIM21, an autoantigen associated with SLE, has been identified as an ubiquitin E3 ligase that targets the transcription factor IRF3 in order to turn off and limit type I IFN production following detection of viral and bacterial infection by Toll Like Receptors (TLRs). However, how the activity of TRIM21 is regulated downstream of TLRs is unknown. In this study we demonstrate that TRIM21 is tyrosine phosphorylated following TLR3 and TLR4 stimulation, suggesting that its activity is potentially regulated by tyrosine phosphorylation. Using Netphos, we have identified three key tyrosines that are strongly predicted to be phosphorylated, two of which are conserved between the human and murine forms of TRIM21, at residues 343, 388, and 393, all of which have been mutated from tyrosine to phenylalanine (Y343F, Y388F, and Y393F). We have observed that tyrosine phosphorylation of TRIM21 only occurs in the substrate binding PRY/SPRY domain, and that Y393, and to a lesser extent, Y388 are required for TRIM21 to function as a negative regulator of IFN-β promoter activity. Further studies revealed that mutating Y393 to phenylalanine inhibits the ability of TRIM21 to interact with its substrate, IRF3, thus providing a molecular explanation for the lack of activity of Y393 on the IFN-β promoter. Our data demonstrates a novel role for tyrosine phosphorylation in regulating the activity of TRIM21 downstream of TLR3 and TLR4. Given the pathogenic role of TRIM21 in systemic autoimmunity, these findings have important implications for the development of novel therapeutics
Recommended from our members
The use of phylogeny to interpret cross-cultural patterns in plant use and guide medicinal plant discovery: an example from Pterocarpus (Leguminosae)
The study of traditional knowledge of medicinal plants has led to discoveries that have helped combat diseases and improve healthcare. However, the development of quantitative measures that can assist our quest for new medicinal plants has not greatly advanced in recent years. Phylogenetic tools have entered many scientific fields in the last two decades to provide explanatory power, but have been overlooked in ethnomedicinal studies. Several studies show that medicinal properties are not randomly distributed in plant phylogenies, suggesting that phylogeny shapes ethnobotanical use. Nevertheless, empirical studies that explicitly combine ethnobotanical and phylogenetic information are scarce.In this study, we borrowed tools from community ecology phylogenetics to quantify significance of phylogenetic signal in medicinal properties in plants and identify nodes on phylogenies with high bioscreening potential. To do this, we produced an ethnomedicinal review from extensive literature research and a multi-locus phylogenetic hypothesis for the pantropical genus Pterocarpus (Leguminosae: Papilionoideae). We demonstrate that species used to treat a certain conditions, such as malaria, are significantly phylogenetically clumped and we highlight nodes in the phylogeny that are significantly overabundant in species used to treat certain conditions. These cross-cultural patterns in ethnomedicinal usage in Pterocarpus are interpreted in the light of phylogenetic relationships.This study provides techniques that enable the application of phylogenies in bioscreening, but also sheds light on the processes that shape cross-cultural ethnomedicinal patterns. This community phylogenetic approach demonstrates that similar ethnobotanical uses can arise in parallel in different areas where related plants are available. With a vast amount of ethnomedicinal and phylogenetic information available, we predict that this field, after further refinement of the techniques, will expand into similar research areas, such as pest management or the search for bioactive plant-based compounds
The adverse neuro-developmental effects of postnatal steroids in the preterm infant: a systematic review of RCTs
BACKGROUND: Recent reports have raised concerns that postnatal steroids may cause neuro-developmental impairment in preterm infants. This systematic review was performed with the objective of determining whether glucocorticoid therapy, to prevent or treat bronchopulmonary dysplasia, impairs neuro-developmental outcomes in preterm infants. METHOD: A systematic review of the literature was performed. Medline was searched and articles retrieved using predefined criteria. Data from randomized controlled trials with adequate neuro-developmental follow up (to at least one year) were entered into a meta-analysis to determine the effects of postnatal treatment of preterm infants with glucocorticoids. Cerebral palsy rates, and neuro-developmental impairment (developmental score more than 2SD below the mean, or cerebral palsy or blindness) were analyzed. The studies were divided into 2 groups according to the extent of contamination of the results by treatment of controls with steroids after the initial study period, those with less than 30% contamination, and those with more than 30% contamination or size of contamination not reported. RESULTS: Postnatal steroid therapy is associated with an increase in cerebral palsy and neuro-developmental impairment. The studies with less contamination show a greater effect of the steroids, consistent with a real direct toxic effect of steroids on the developing central nervous system. The typical relative risk for the development of cerebral palsy derived from studies with less than 30% contamination is 2.86 (95% CI 1.95, 4.19). The typical relative risk for the development of neuro-developmental disability among followed up infants from studies with less than 30% contamination is 1.66 (95% CI 1.26, 2.19). From this subgroup of studies, the number of premature infants who need to be treated to have one more infant with cerebral palsy (number needed to harm, NNH) is 7; to have one more infant with neuro-developmental impairment the NNH is 11. CONCLUSIONS: Postnatal pharmacologic steroid treatment for prevention or treatment of bronchopulmonary dysplasia is associated with dramatic increases in neuro-developmental impairment. As there is no clear evidence in the literature of long term benefit, their use for this indication should be abandoned
Divergent Roles of Clock Genes in Retinal and Suprachiasmatic Nucleus Circadian Oscillators
The retina is both a sensory organ and a self-sustained circadian clock. Gene targeting studies have revealed that mammalian circadian clocks generate molecular circadian rhythms through coupled transcription/translation feedback loops which involve 6 core clock genes, namely Period (Per) 1 and 2, Cryptochrome (Cry) 1 and 2, Clock, and Bmal1 and that the roles of individual clock genes in rhythms generation are tissue-specific. However, the mechanisms of molecular circadian rhythms in the mammalian retina are incompletely understood and the extent to which retinal neural clocks share mechanisms with the suprachiasmatic nucleus (SCN), the central neural clock, is unclear. In the present study, we examined the rhythmic amplitude and period of real-time bioluminescence rhythms in explants of retina from Per1-, Per2-, Per3-, Cry1-, Cry2-, and Clock-deficient mice that carried transgenic PERIOD2::LUCIFERASE (PER2::LUC) or Period1::luciferase (Per1::luc) circadian reporters. Per1-, Cry1- and Clock-deficient retinal and SCN explants showed weakened or disrupted rhythms, with stronger effects in retina compared to SCN. Per2, Per3, and Cry2 were individually dispensable for sustained rhythms in both tissues. Retinal and SCN explants from double knockouts of Cry1 and Cry2 were arrhythmic. Gene effects on period were divergent with reduction in the number of Per1 alleles shortening circadian period in retina, but lengthening it in SCN, and knockout of Per3 substantially shortening retinal clock period, but leaving SCN unaffected. Thus, the retinal neural clock has a unique pattern of clock gene dependence at the tissue level that it is similar in pattern, but more severe in degree, than the SCN neural clock, with divergent clock gene regulation of rhythmic period
- …