174 research outputs found

    Genetic Algorithm Performance with Different Selection Strategies in Solving TSP

    Get PDF
    A genetic algorithm (GA) has several genetic operators that can be modified to improve the performance of particular implementations. These operators include parent selection, crossover and mutation. Selection is one of the important operations in the GA process. There are several ways for selection. This paper presents the comparison of GA performance in solving travelling salesman problem (TSP) using different parent selection strategy. Several TSP instances were tested and the results show that tournament selection strategy outperformed proportional roulette wheel and rank-based roulette wheel selections, achieving best solution quality with low computing times. Results also reveal that tournament and proportional roulette wheel can be superior to the rank-based roulette wheel selection for smaller problems only and become susceptible to premature convergence as problem size increases

    Wearable in-ear PPG: detailed respiratory variations enable classification of COPD

    Get PDF
    An ability to extract detailed spirometry-like breath-ing waveforms from wearable sensors promises to greatly improve respiratory health monitoring. Photoplethysmography (PPG) has been researched in depth for estimation of respiration rate, given that it varies with respiration through overall intensity, pulse amplitude and pulse interval. We compare and contrast the extraction of these three respiratory modes from both the ear canal and finger and show a marked improvement in the respiratory power for respiration induced intensity variations and pulse amplitude variations when recording from the ear canal. We next employ a data driven multi-scale method, noise assisted multivariate empirical mode decomposition (NA-MEMD), which allows for simultaneous analysis of all three respiratory modes to extract detailed respiratory waveforms from in-ear PPG. For rigour, we considered in-ear PPG recordings from healthy subjects, both older and young, patients with chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) and healthy subjects with artificially obstructed breathing. Specific in-ear PPG waveform changes are observed for COPD, such as a decreased inspiratory duty cycle and an increased inspiratory magnitude, when compared with expiratory magnitude. These differences are used to classify COPD from healthy and IPF waveforms with a sensitivity of 87% and an overall accuracy of 92%. Our findings indicate the promise of in-ear PPG for COPD screening and unobtrusive respiratory monitoring in ambulatory scenarios and in consumer wearables

    Design and rationale of a multi-center, pragmatic, open-label randomized trial of antimicrobial therapy - the study of clinical efficacy of antimicrobial therapy strategy using pragmatic design in Idiopathic Pulmonary Fibrosis (CleanUP-IPF) clinical trial

    Get PDF
    Compelling data have linked disease progression in patients with idiopathic pulmonary fibrosis (IPF) with lung dysbiosis and the resulting dysregulated local and systemic immune response. Moreover, prior therapeutic trials have suggested improved outcomes in these patients treated with either sulfamethoxazole/ trimethoprim or doxycycline. These trials have been limited by methodological concerns. This trial addresses the primary hypothesis that long-term treatment with antimicrobial therapy increases the time-to-event endpoint of respiratory hospitalization or all-cause mortality compared to usual care treatment in patients with IPF. We invoke numerous innovative features to achieve this goal, including: 1) utilizing a pragmatic randomized trial design; 2) collecting targeted biological samples to allow future exploration of 'personalized' therapy; and 3) developing a strong partnership between the NHLBI, a broad range of investigators, industry, and philanthropic organizations. The trial will randomize approximately 500 individuals in a 1:1 ratio to either antimicrobial therapy or usual care. The site principal investigator will declare their preferred initial antimicrobial treatment strategy (trimethoprim 160 mg/ sulfamethoxazole 800 mg twice a day plus folic acid 5 mg daily or doxycycline 100 mg once daily if body weight is < 50 kg or 100 mg twice daily if ≥50 kg) for the participant prior to randomization. Participants randomized to antimicrobial therapy will receive a voucher to help cover the additional prescription drug costs. Additionally, those participants will have 4-5 scheduled blood draws over the initial 24 months of therapy for safety monitoring. Blood sampling for DNA sequencing and genome wide transcriptomics will be collected before therapy. Blood sampling for transcriptomics and oral and fecal swabs for determination of the microbiome communities will be collected before and after study completion. As a pragmatic study, participants in both treatment arms will have limited in-person visits with the enrolling clinical center. Visits are limited to assessments of lung function and other clinical parameters at time points prior to randomization and at months 12, 24, and 36. All participants will be followed until the study completion for the assessment of clinical endpoints related to hospitalization and mortality events. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT02759120

    Epithelial senescence in idiopathic pulmonary fibrosis is propagated by small extracellular vesicles

    Get PDF
    BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease that affects 3 million people worldwide. Senescence and small extracellular vesicles (sEVs) have been implicated in the pathogenesis of IPF, although how sEVs promote disease remains unclear. Here, we profile sEVs from bronchial epithelial cells and determine small RNA (smRNA) content. METHODS: Conditioned media was collected and sEVs were isolated from normal human bronchial epithelial cells (NHBEs) and IPF-diseased human bronchial epithelial cells (DHBEs). RESULTS: Increased sEV release from DHBEs compared to NHBEs (n = 4; p < 0.05) was detected by nanoparticle tracking analysis. NHBEs co-cultured with DHBE-derived sEVs for 72 h expressed higher levels of SA-β-Gal and γH2AX protein, p16 and p21 RNA and increased secretion of IL6 and IL8 proteins (all n = 6-8; p < 0.05). sEVs were also co-cultured with healthy air-liquid interface (ALI) cultures and similar results were observed, with increases in p21 and p16 gene expression and IL6 and IL8 (basal and apical) secretion (n = 6; p < 0.05). Transepithelial electrical resistance (TEER) measurements, a reflection of epithelial barrier integrity, were decreased upon the addition of DHBE-derived sEVs (n = 6; p < 0.05). smRNA-sequencing identified nineteen significantly differentially expressed miRNA in DHBE-derived sEVs compared to NHBE-derived sEVs, with candidate miRNAs validated by qPCR (all n = 5; p < 0.05). Four of these miRNAs were upregulated in NHBEs co-cultured with DHBE-derived sEVs and three in healthy ALI cultures co-cultured with DHBE-derived sEVs (n = 3-4; p < 0.05). CONCLUSIONS: This data demonstrates that DHBE-derived sEVs transfer senescence to neighbouring healthy cells, promoting the disease state in IPF

    Pulmonary rehabilitation in idiopathic pulmonary fibrosis and COPD: a propensity matched real-world study

    Get PDF
    BACKGROUND: The adherence to and clinical efficacy of pulmonary rehabilitation in idiopathic pulmonary fibrosis (IPF), particularly in comparison to people with chronic obstructive pulmonary disease (COPD), remains uncertain. The objectives of this real-world study were to compare the responses of patients with IPF with a matched group of patients with COPD undergoing the same supervised, outpatient pulmonary rehabilitation program, and to determine whether pulmonary rehabilitation is associated with survival in IPF. RESEARCH QUESTION: Do people with IPF improve to the same extent with pulmonary rehabilitation as a matched group of individuals with COPD, and are non-completion of and/or non-response to pulmonary rehabilitation associated with one-year all-cause mortality in IPF? STUDY DESIGN AND METHODS: Using propensity score matching, 163 patients with IPF were matched 1:1 with a control group of 163 patients with COPD referred to pulmonary rehabilitation. We compared between-group pulmonary rehabilitation completion rates and response. Survival status in the IPF cohort was recorded over one-year following pulmonary rehabilitation discharge. Cox proportional-hazards regression explored the association between pulmonary rehabilitation status and all-cause mortality. RESULTS: Similar pulmonary rehabilitation completion rates (IPF: 69%; COPD: 63%; p=0.24) and improvements in exercise response were observed in both groups with no significant mean (95% confidence interval (CI)) between-group differences in incremental shuttle walk (ISW) change (2 (-18 to 22) meters). Pulmonary rehabilitation non-completion (hazard ratio (HR) (95%CI) 5.62 (2.24 to 14.08)) and non-response (HR (95%CI) 3.91 (1.54 to 9.93)) were independently associated with increased one-year all-cause mortality in IPF. INTERPRETATION: Compared with a matched group of patients with COPD, this real-word study demonstrates that patients with IPF have similar completion rates and magnitude of response to pulmonary rehabilitation. In IPF, non-completion of and non-response to pulmonary rehabilitation were associated with increased all-cause mortality. These data reinforce the benefits of pulmonary rehabilitation in patients with IPF

    Change in gait speed and adverse outcomes in patients with idiopathic pulmonary fibrosis: a prospective cohort study.

    Get PDF
    BACKGROUND AND OBJECTIVE: Gait speed is associated with survival in individuals with idiopathic pulmonary fibrosis (IPF). The extent to which four-metre gait speed (4MGS) decline predicts adverse outcome in IPF remains unclear. We aimed to examine longitudinal 4MGS change and identify a cut-point associated with adverse outcome. METHODS: In a prospective cohort study, we recruited 132 individuals newly diagnosed with IPF and measured 4MGS change over 6 months. Death/first hospitalization at 6 months were composite outcome events. Complete data (paired 4MGS plus index event) were available in 85 participants; missing 4MGS data were addressed using multiple imputation. Receiver-Operating Curve plots identified a 4MGS change cut-point. Cox proportional-hazard regression assessed the relationship between 4MGS change and time to event. RESULTS: 4MGS declined over 6 months (mean [95% CI] change: -0.05 [-0.09 to -0.01] m/s; p = 0.02). A decline of 0.07 m/s or more in 4MGS over 6 months had better discrimination for the index event than change in 6-minute walk distance, forced vital capacity, Composite Physiologic Index or Gender Age Physiology index. Kaplan-Meier curves demonstrated a significant difference in time to event between 4MGS groups (substantial decline: >-0.07 m/s versus minor decline/improvers: ≤-0.07 m/s; p = 0.007). Those with substantial decline had an increased risk of hospitalization/death (adjusted hazard ratio [95% CI] 4.61 [1.23-15.83]). Similar results were observed in multiple imputation analysis. CONCLUSION: In newly diagnosed IPF, a substantial 4MGS decline over 6 months is associated with shorter time to hospitalization/death at 6 months. 4MGS change has potential as a surrogate endpoint for interventions aimed at modifying hospitalization/death

    The transferrin receptor CD71 delineates functionally distinct airway macrophage subsets during idiopathic pulmonary fibrosis

    Get PDF
    RATIONALE: Idiopathic pulmonary fibrosis (IPF) is a devastating progressive disease with limited therapeutic options. Airway macrophages (AMs) are key components of the defence of the airways and are implicated in the pathogenesis of IPF. Alterations in iron metabolism have been described during fibrotic lung disease and in murine models of lung fibrosis. However, the role of transferrin receptor-1 (CD71)-expressing AMs in IPF is not known. OBJECTIVES: To assess the role of CD71 expressing AMs in the IPF-lung. METHODS: We utilized multi-parameter flow cytometry, gene expression analysis and phagocytosis/transferrin uptake assays to delineate the role of AMs expressing, or lacking, CD71 in the BAL of patients with IPF or healthy controls. MEASUREMENTS AND MAIN RESULTS: There was a distinct increase in proportions of AMs lacking CD71 in IPF patients in comparison to healthy controls. Levels of BAL transferrin were enhanced in IPF-BAL and furthermore, CD71- AMs had an impaired ability to sequester transferrin. CD71+ and CD71- AMs were phenotypically, functionally and transcriptionally distinct, with CD71- AMs characterised by reduced expression of markers of macrophage maturity, impaired phagocytosis and enhanced expression of pro-fibrotic genes. Importantly, proportions of AMs lacking CD71 were independently associated with worse survival, underlining the importance of this population in IPF and as a potential therapeutic target. CONCLUSIONS: Taken together these data highlight how CD71 delineates AM subsets which play distinct roles in IPF and furthermore, CD71- AMs may be an important pathogenic component of fibrotic lung disease

    The role of bacteria in the pathogenesis and progression of idiopathic pulmonary fibrosis

    Get PDF
    Rationale:Idiopathic pulmonaryfibrosis (IPF)isa progressivelung disease of unknown cause that leads to respiratory failure and death within 5 years of diagnosis. Overt respiratory infection and immunosuppression carry a high morbidity and mortality, and polymorphisms in genes related to epithelial integrity and host defense predispose to IPF. Objectives: To investigate the role of bacteria in the pathogenesis and progression of IPF. Methods: We prospectively enrolled patients diagnosed with IPF according to international criteria together with healthy smokers, nonsmokers, and subjectswithmoderate chronic obstructive pulmonary disease as control subjects. Subjects underwent bronchoalveolar lavage (BAL), from which genomic DNA was isolated. The V3–V5 region of the bacterial 16S rRNA gene was amplified, allowing quantification of bacterial load and identification of communities by 16S rRNA quantitative polymerase chain reaction and pyrosequencing. Measurements and Main Results: Sixty-five patients with IPF had double the burden of bacteria in BAL fluid compared with 44 control subjects. Baseline bacterial burden predicted the rate of decline in lung volume and risk of death and associated independently with the rs35705950 polymorphism of the MUC5B mucin gene, a proven host susceptibilityfactorfor IPF. Sequencing yielded912,883 high-quality reads from all subjects.WeidentifiedHaemophilus, Streptococcus,Neisseria, and Veillonella spp. to be more abundant in cases than control subjects. Regression analyses indicated that these specific operational taxonomic units as well as bacterial burden associated independently with IPF. Conclusions: IPF is characterized by an increased bacterial burden in BAL that predicts decline in lung function and death. Trials of antimicrobial therapy are needed to determine if microbial burden is pathogenic in the disease

    Modelling forced vital capacity in idiopathic pulmonary fibrosis: optimising trial design.

    Get PDF
    INTRODUCTION: Forced vital capacity is the only registrational endpoint in idiopathic pulmonary fibrosis clinical trials. As most new treatments will be administered on top of standard of care, estimating treatment response will become more challenging. We developed a simulation model to quantify variability associated with forced vital capacity decline. METHODS: The model is based on publicly available clinical trial summary and home spirometry data. A single, illustrative trial setting is reported. Model assumptions are 400 subjects randomised 1:1 to investigational drug or placebo over 52 weeks, 50% of each group receiving standard of care (all-comer population), and a 90-mL treatment difference in annual forced vital capacity decline. Longitudinal profiles were simulated and the impact of varying clinical scenarios evaluated. RESULTS: Power to detect a significant treatment difference was 87-97%, depending on the analysis method. Repeated measures analysis generally outperformed analysis of covariance and mixed linear models, particularly with missing data (as simulated data were non-linear). A 15% yearly random dropout rate led to 0.6-5% power loss. Forced vital capacity decline-related dropout introduced greater power loss (up to 12%), as did subjects starting/stopping standard of care or investigational drug. Power was substantially lower for a 26-week trial due to the smaller assumed treatment effect at week 26 (sample size would need doubling to reach a power similar to that of a 52-week trial). CONCLUSIONS: Our model quantifies forced vital capacity decline and associated variability, with all the caveats of background therapy, permitting robust power calculations to inform future idiopathic pulmonary fibrosis clinical trial design. FUNDING: Galapagos NV (Mechelen, Belgium)
    • …
    corecore