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Abstract—An ability to extract detailed spirometry-like breath-
ing waveforms from wearable sensors promises to greatly
improve respiratory health monitoring. Photoplethysmography
(PPG) has been researched in depth for estimation of respiration
rate, given that it varies with respiration through overall intensity,
pulse amplitude and pulse interval. We compare and contrast
the extraction of these three respiratory modes from both the
ear canal and finger and show a marked improvement in the
respiratory power for respiration induced intensity variations
and pulse amplitude variations when recording from the ear
canal. We next employ a data driven multi-scale method, noise as-
sisted multivariate empirical mode decomposition (NA-MEMD),
which allows for simultaneous analysis of all three respiratory
modes to extract detailed respiratory waveforms from in-ear
PPG. For rigour, we considered in-ear PPG recordings from
healthy subjects, both older and young, patients with chronic
obstructive pulmonary disease (COPD) and idiopathic pulmonary
fibrosis (IPF) and healthy subjects with artificially obstructed
breathing. Specific in-ear PPG waveform changes are observed
for COPD, such as a decreased inspiratory duty cycle and an
increased inspiratory magnitude, when compared with expiratory
magnitude. These differences are used to classify COPD from
healthy and IPF waveforms with a sensitivity of 87% and an
overall accuracy of 92%. Our findings indicate the promise of
in-ear PPG for COPD screening and unobtrusive respiratory
monitoring in ambulatory scenarios and in consumer wearables.

I. INTRODUCTION

MONITORING of respiration is being integrated rapidly
into consumer wearables, with respiration rate being

a standard feature in many smart watches. Whilst continuous
unobtrusive monitoring of respiration rate is a valuable tool
in both the consumer and patient health tracking domains,
much of the respiratory information that can be derived
from breathing waveforms remains untapped. To this end,
we explore a relatively new tool for non-invasive respiratory
monitoring in the form of in-ear photoplethysmography (PPG).
For rigour, we use reference spirometry as a gold standard
to test the extraction accuracy of the three major respiratory
modes at three different frequencies from in-ear PPG: i)
intensity variations, ii) pulse amplitude variations, and iii)
pulse interval variations. Furthermore, we compare the spectral
respiratory power from simultaneous ear canal PPG and finger
PPG recordings across the three major respiratory modes. A
novel method for extracting respiratory waveforms from PPG
is next presented, which involves a data driven multi-scale
algorithm, empirical mode decomposition (EMD) [1]. This
waveform extraction technique allows for a simultaneous in-
trinsic scale-wise analysis of multi-channel data, and is applied
to extract resting respiratory waveforms from in-ear PPG in
both healthy subjects and patients with breathing disorders,
such as chronic obstructive pulmonary disease (COPD) and
idiopathic pulmonary fibrosis (IPF). This analysis is shown

to allow for the detection of chronic obstructive pulmonary
disease from in-ear PPG.

A. Respiration and photoplethysmography

Photoplethysmography (PPG) refers to the non-invasive use
of light to detect changes in blood volume by transmitting
light through tissue and measuring the amount of light that is
absorbed. When more blood is present, more light is absorbed
and thus less light is reflected back to the sensor.

When we inspire, a decrease in intrathoracic pressure is
created to pull air into the lungs. This decrease in pressure
is passed to the central veins and therefore central venous
pressure also decreases. This, in turn, increases venous return
and drains venous beds at the site of the PPG probe, thus
modulating the DC component of the PPG signal [2]. Right
ventricular stroke volume also increases with the increased
venous flow to the heart, sending more blood to the lungs
for the uptake of oxygen. In turn, left ventricular stroke
volume is decreased, leading to a decreased pulse amplitude
observed through the AC component of PPG [3] [4]. This is
accompanied by an increase in heart rate, otherwise known
as respiratory sinus arrhythmia (RSA) [5], which causes a
decrease in the interval between pulses in the PPG signal. The
opposite of these effects can be observed during expiration.
Three major respiratory modes are therefore present in PPG
during respiration [6]:

1) Respiratory induced intensity variations (RIIVs) which
are generated by changes in venous pressure which
modulate the DC component of photoplethysmography,
and are therefore accessible directly from the raw-PPG
signal.

2) Pulse amplitude variations due to changes in left ven-
tricular stroke volume, which can be obtained from the
envelope of the AC filtered PPG signal.

3) Pulse interval variations generated through respiratory
sinus arrhythmia. These can be obtained by measuring
the interval between consecutive pulses.

It should also be noted that there are prominent low fre-
quency variations which also occur in the PPG signal, related
to sympathetic tone. These low frequency variations usually
peak at 0.1Hz [7] [3], with harmonics at 0.2Hz which can
negatively impact the extraction of respiratory signals.

An extensive literature exists on estimating respiration rate
from PPG, usually from the finger but also from the forearm
[2], wrist [8] and multiple other body positions such as the
earlobe, forehead, neck [9] and chest [10]. The PPG yields
high respiration rate accuracy in all three PPG respiratory
modes [11], in both healthy subjects and subjects with breath-
ing disorders, such as chronic obstructive pulmonary disease



(COPD) and asthma [12]. It should be noted that accuracy
decreases at high breathing frequencies, above 0.3Hz [13],
which is likely due to a low pass filter effect [14] of the
transfer function from thoracic pressure to venous return, and
the reality of only having a few pulses per breath to sample
from for pulse interval and pulse amplitude variations at higher
frequencies.

Moreover, it has been shown that errors across the three
respiratory modes are comparable when it comes to calculation
of respiration rate [15]. This gives a strong argument for
the utility of all three modes given the presence of different
artefacts, the variability across subjects and the variability
across different respiration frequencies and body positions
[16]. Research suggests that the spectral power of respiration
in PPG is far larger from regions of the head [17], ear [18]
and shoulders [19] than the finger. Furthermore, an analysis on
spectral power of the PPG at different body positions, namely
the forearm, wrist, finger, forehead and shoulder, indicates that
the forearm had the highest respiration power but the lowest
pulse power, likely due to its close proximity to large veins
which may improve the power of RIIVs induced by venous
pressure changes; the shoulder and forehead maintain both
high respiratory power and pulse power, while the finger had
the lowest respiratory power [19].

With photoplethysmography at the forearm, it has been
documented that the respiration induced intensity variations
(RIIVs) are effective enough to detect amplitude changes in
breathing and also simulated apnea with temporary breath
holds [2]. However, changes in duty cycle or higher order
statistics such as skewness have not been studied in RIIVs.
Moreover, despite errors in respiration rate estimation being
similar across the three major PPG respiratory modes, when
it comes to the magnitude of respiratory variations, they are
far more pronounced in venous return than in changes in
stroke volume, usually by an order of magnitude [20]. This,
in addition to the fact that the sample frequency of pulse
amplitude and frequency variations are limited to the pulse
rate, suggests that RIIVs may be superior for detecting detailed
waveform changes in respiration.

In terms of sex and age differences in respiratory signals
from PPG, literature suggests that the pulse interval variations
may be more pronounced in females than in males [16], and
more pronounced in the young than in the elderly [21], but
that there is no significant difference in the RIIVs with age or
sex [22].

B. In-Ear Photoplethysmography
With growing popularity of so called Hearables [23], the ear

has come to light as a attractive location for wearable sensors,
with its prominence in the ear-EEG [24] [25] and ear-ECG
domains [26]. Similarly, the in-ear location is rapidly emerging
as a favourable site for wearable photoplethysmography and by
extension pulse oximetry, due to many benefits over commonly
used finger probes. It has proven accurate at detecting hypoxia
[27] and for detecting apnea events during obstructive sleep
apnea [28]. Additionally, a significantly faster response time
to changes in blood oxygen has been shown from the ear when
compared with the finger [29].

In-ear PPG has also been shown to be resistant to changes
in blood volume which occur during hypothermia [18], in con-
trast to commonly used photoplethysmography positions such
as the earlobe or the finger. During cold exposure, peripheral
areas of the body experience vasoconstriction, whereas the
ear canal maintains internal blood flow levels. As previously
discussed, current research suggests that PPG from the ear
canal is far more sensitive to intensity variations that arise
from respiration [18] than the finger PPG, which is inline
with similar results for shoulder and forehead PPG [19].
However, this increase in respiratory power has only been
documented through respiratory induced intensity variations
in the raw PPG signal. To address this issue, we examine
the spectral power across all three PPG respiratory modes in
both in-ear PPG and finger PPG. Furthermore, in-ear PPG
has only been used to estimate respiratory rate [28], but has
not been used for insight into the respiratory waveform itself.
In this paper we set out to show that in-ear PPG possesses
sufficient respiratory waveform information for the screening
of obstructive breathing disorders.

C. Change in breathing with COPD

The prevalence of respiratory diseases has grown by 39%
in the last 3 decades [30], with nearly 1 in 5 people in the
UK having had a diagnosis of asthma, chronic obstructive
pulmonary disease or another respiratory illness [31].

Chronic obstructive pulmonary disease (COPD) is a debili-
tating illness caused by an increased inflammatory response in
the lungs which leads to obstructed airflow [32], particularly
during expiration. Chronic obstructive pulmonary disease is
generally diagnosed with spirometry, by measuring the ratio
of volume during forced expiration in one second (FEV1),
against forced vital capacity (FVC), whereby COPD is defined
as FEV1/FVC<0.7. This obstruction during expiration leads
to an increased respiratory rate (tachypnea), with a decreased
inspiration time (TI) in comparison with the overall breathing
time (TTOT). The ratio of TI/TTOT in COPD, otherwise known
as the inspiratory duty cycle, is therefore decreased at rest
and during exercise [33] [34], with values of around 0.35
seen at rest compared with 0.42 in healthy patients [33]. This
change in duty cycle is a major difference seen in obstructive
lung disease when compared to restrictive lung diseases such
as idiopathic pulmonary fibrosis (IPF), where, due to the
restriction to both inspiration and expiration, the FEV1/FVC
remains higher [35]. Pulmonary fibrosis usually has an in-
creased respiratory rate, and lower respiratory volume, but no
significant change to the duty cycle.

Other methods of classifying respiration in COPD include
examining the sample entropy of flow signals [36], where
the sample entropy decreased with an increasing severity of
COPD due to fewer degrees of freedom with constrained
breathing. Moreover, in the PPG domain, a combination of
pulse, respiration rate, and SpO2 (derived from pulse oximetry)
has been used to predict exacerbations in COPD patients with
moderate accuracy [37], and PPG has recently been used
to estimate lung compliance in lung disease [38]. To our
knowledge, there has not yet been a successful classification



of COPD from PPG-derived respiratory waveforms, and to
address this void we both explore the valuable respiratory
properties of in-ear PPG and employ these in patients to
examine and classify COPD.

II. MATERIALS AND EXPERIMENTAL DESIGN

A. Hardware

(a) (b)

Fig. 1. The in-ear photoplethysmography sensor used in our study. (a) Sensor
placement within the ear canal. (b) Zoom-in of the pulse oximetry sensor, with
a form factor of a viscoelastic memory foam earbud.

The photoplethysmography sensor used was the MAX30101
digital PPG chip by Maxim Integrated (San Jose, CA, USA),
which consists of green (537nm), red (660nm) and infrared
(880nm) light emitting diodes as well as a photo-diode to
measure the reflected light. In this study, we utilised the
infrared light emitting diode for PPG measurements as it
gave the strongest signal to noise ratio. The PPG chip was
positioned on a thin rectangular printed circuit board with
decoupling capacitors and level shifting circuitry that enable
digital communication between the 1.8 V and 3 V domains.
The chip and corresponding circuitry were neatly covered in
heat shrink and embedded in a cut-out rectangular section of
a viscoelastic foam earbud [39]. For user comfort, the earbuds
were of small, medium and large sizes. The PPG chip, earbud
and its placement in the ear are shown in Fig. 1. In the
simultaneous in-ear PPG and finger PPG recordings, the same
sensor was secured to the right index finger. The PPG sensors
were wired to a purpose built circuit board which stored the
data on an SD card.

For simultaneous spirometry and in-ear PPG recordings, a
SFM3200 flow meter by Sensiron (Stäfa, Switzerland) was
used to measure breathing flow with an airtight connection
to a tube into which the participant breathed, whilst a nose
clip restricted nasal breathing. The SFM3200 was connected
to an Arduino Uno by Arduino (Somerville, MA, USA) which
recorded the flow rate values. The Arduino was also used to
send out electrical pulses to the PPG recording circuit at semi-
regular time intervals, so that the two data streams of PPG and
airflow could be time aligned.

B. Experimental Design

1) Simultaneous spirometry and in-ear PPG: Simultaneous
in-ear PPG and spirometry was used to evaluate presence

of respiratory frequencies in the three respiratory modes
of intensity, pulse amplitude and pulse interval. This was
achieved across three different frequencies corresponding to
slow, moderate and fast breathing rates. Furthermore, simul-
taneous in-ear PPG and spirometry recordings were used to
evaluate the extraction of the examined breathing waveforms:
i) normal breathing and ii) breathing with a duty cycle typical
to severe chronic obstructive pulmonary disease (COPD). In
both the cases of frequency and flow waveform, the spirometer
served as the ground truth. The participant in these recordings
was a healthy male aged 25 years. The participant had the
in-ear photoplethysmography sensor placed in the right ear
canal, whilst breathing into the spirometer. In both cases of
breathing at different frequencies and with different char-
acteristic waveforms, the subject was informed of when to
inspire and expire using a timed on-screen animation. For
the frequency recordings, the animation aided the subject
in breathing at frequencies of 0.18Hz, 0.25Hz and 0.33Hz,
corresponding to 10.8 breaths per minute, 15 breaths per
minute and 20 breaths per minute, respectively. The subject
adhered to each frequency for 2 minutes, with 30 seconds
rest between different frequencies. For the simulated low
inspiratory duty cycle breathing, the base frequency was 0.2Hz
and the subject adhered to a breathing timing ratio that was
1:3 inspiration to expiration, for 120 seconds.

2) Simultaneous in-ear and finger PPG: The participants in
the recordings were 14 healthy subjects (7 males, 7 females)
aged 19 - 38 years. Two PPG sensors were used per subject,
the first safely secured within the right ear canal, as shown
in Fig. 1, and the second secured to the right index finger.
Subjects were in a seated position and were instructed to
breathe normally for 120 seconds, whilst photoplethysmog-
raphy was recorded from simultaneously from both the ear
and finger. Out of the 14 subjects, 3 subjects were discarded
from analysis as they showed no clear respiratory peak in the
frequency domain. The 11 subjects used for analysis consisted
of 6 males and 5 females aged 19 - 28 years.

3) Resting recordings in older healthy subjects and patients
with breathing disorders: The participants in these recordings
were split up into 2 groups, an older healthy subset of 4
subjects (2 males, 2 females) aged 56 - 62 years, and a subset
of 6 subjects with respiratory disease (3 males, 3 females) aged
53 - 88 years. Out of the patients with respiratory disease,
4 patients had chronic obstructive pulmonary disease and 2
patients had idiopathic pulmonary fibrosis. Continuous PPG
was measured from the ear canal of subjects at rest for 2
minutes using our in-ear PPG sensor.

4) Artificially obstructed breathing: The participants in
these recordings were 6 healthy subjects (4 males, 2 females)
aged 23 - 30 years. Participants were asked to breathe in
through a tube of internal diameter 8mm and length 300mm,
and breathe out through a tube of internal diameter 5mm and
length 300mm, giving a ratio of resistance from inspiration
to expiration of 25

64 ≈ 0.4. The tubes were linked with one-
way valves in opposite directions so that breathing would
automatically switch between the two tubes when switching
from inspiration to expiration [40]. Continuous PPG was
measured from the ear canal of subjects whilst they breathed



through the tubes for 2 minutes.
The recordings were performed under the IC ethics commit-

tee approval JRCO 20IC6414, and the NHS Health Research
Authority 20/SC/0315. All subjects gave full informed con-
sent.

III. SIGNAL PROCESSING

A. Extraction of Respiratory Modulations from PPG

The three major respiratory modes in photoplethysmography
are: i) respiration induced intensity variations (RIIVs) which
are accessible from the raw PPG, ii) pulse amplitude variations
and iii) pulse interval variations, both accessible from the AC
component of PPG. The extraction of the RIIV waveforms
can be achieved via band-pass filtering or by adaptive methods
such as empirical mode decomposition which will be described
in full in the next section. However, for the purpose of
spectral comparisons, the RIIV can be observed by taking
the periodogram of the unfiltered PPG signal, whereby the
signal is first detrended to remove the drifts and ensure that
the periodogram is not biased at 0Hz.

To extract the AC component of the PPG signal, the
detrended PPG was band-pass filtered between 0.9 and 30Hz.
Peaks and troughs were then extracted from the pulse sig-
nal using the MATLAB by MathWorks (Natick, MA, USA)
function findpeaks, with a minimum peak prominence of 150
arbitrary units. For the pulse amplitude variations, the envelope
of the pulse signal was calculated by interpolating the peaks
at 62.5Hz, and interpolating the troughs at 62.5Hz, and then
summing up their absolute value. The time values of the
troughs were used for the pulse interval variations as, due
to the characteristic pulse waveform from the ear [29], the
troughs are less sensitive to noise. The pulse interval signal
was calculated as the time between consecutive pulses at
the time point of each trough, and interpolated at 62.5Hz
to match the sampling frequency of the PPG signal. Fig. 2
shows exemplar periodograms of the three respiratory modes,

indicating that the normalised power spectral density has good
adherence to the ground truth spirometry across all respiratory
modes and across the three respiratory frequencies of 0.18Hz,
0.25Hz and 0.33Hz. The largest disparity between the esti-
mated frequency and ground truth was an error of 0.003Hz
(0.18 breaths per minute) that occured with the pulse interval
mode at 0.33Hz breathing. The periodograms were, however,
taken over long time periods of 100 seconds and the recordings
were performed with minimal movement, providing an ideal
situation for good frequency adherence. Over shorter time
periods and with motion artefacts, adherence to the ground
truth periodogram would be lower.

B. Respiratory Power Comparisons: Ear vs Finger

From the 120 second photoplethysmography recordings of
normal breathing, the two modes of pulse amplitude variations
and pulse interval variations were extracted from the ear and
finger as described in the previous subsection. The analysis
considered the final 84 seconds (5250 samples) in an attempt
to mitigate the conscious effects on breathing that can occur
when first being told to breathe normally. All three modes
were detrended to remove the mean, and power spectra of
the three modes were then assessed for a shared respiratory
peak. The recording was discarded if there was no clear
shared peak present across modes on both the ear and finger
recordings. A clear respiratory peak was observed in 11 out
of the 14 recorded subjects. The normalised peak value was
calculated by taking the power spectral density (PSD) value of
the respiratory peak and dividing it by the sum of the power
spectral density from 0Hz to 2Hz. The respiratory PSD ratio
was then calculated by dividing the normalised peak from the
ear by the normalised peak from the finger, and log10 of the
ratio was taken to make the distribution of ratios proportional
in each direction. Accordingly, a negative value represented a
greater relative respiratory power from the finger, a positive
value represented a greater relative respiratory power from the
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Fig. 2. Normalised power spectral density (PSD) between 0.15 and 0.4Hz of each respiratory mode from in-ear PPG: Respiration induced intensity variations
(blue, left), pulse amplitude variations (purple, middle) and pulse interval variations (red, right). The normalised PSD for each recording and respiratory
mode is compared with the normalised PSD of the ground truth spirometry in each plot, which provides the true frequency distribution of respiration for that
recording. The top row corresponds to recordings with a breathing rate of 0.18Hz, with the middle row and bottom row to 0.25Hz and 0.33Hz respectively.



20 30 40 50 60 70 80 90 100

-2

0

2

4

-1
0
1

-1
0
1

-1
0
1

-1
0
1

20 30 40 50 60 70 80 90 100
-1
0
1

20 30 40 50 60 70 80 90 100
-1

0

1

2

20 30 40 50 60 70 80 90 100
Time (s)

-100

0

100

200

NA-MEMD Intrinsic Mode Functions

In-Ear PPG

Reconstructed Respiratory Waveform from Respiratory IMFs

Reference Spirometry Flow

Respiratory
IMFs

Pulse

Low-frequency
variation

F
lo

w
 (

L
itr

es
/M

in
)

A
m

pl
itu

de
 (

a.
u)

A
m

pl
itu

de
 (

a.
u)

A
m

pl
itu

de
 (

a.
u)

Fig. 3. Noise assisted multivariate empirical mode decomposition (NA-
MEMD) of in-ear PPG for a subject breathing with an atypical 1:3 inspiration
to expiration time ratio. Indicated are the detrended in-ear PPG (top, black),
the breakdown of the in-ear PPG into intrinsic mode functions (top middle)
with the respiratory IMFs highlighted in blue, the reconstructed in-ear PPG
respiratory waveform (bottom middle, blue) and the reference spirometry flow
signal (bottom, red). For convenience, the PPG waveform is flipped so that
peaks correspond to inspiration and troughs correspond to expiration.

ear, and a value of zero represented no difference between
the two recording sites. This method is similar to methods
previously employed in the literature, with the difference in
that it focuses on a defined respiratory peak rather than on
overall power in the frequency band. This choice was made
as in general especially with the respiration induced intensity
variations, much of the power in the respiration frequency band
can be from higher harmonics of low frequency variations.
Moreover, normalising by the sum of the power spectral den-
sity helped to mitigate differences in signal quality that could
occur from inadequate placement of either sensor. Importantly,
our analysis looked at all three respiratory modes, rather than
just the respiration induced intensity variations.

C. Empirical Mode Decomposition for Respiration

Empirical mode decomposition (EMD) employs a nonlinear
data driven filter-bank structure to deconstruct time domain
signals into data-adaptive narrow-band amplitude and fre-
quency (time series) components, known as intrinsic mode
functions (IMFs) [1]. Since the IMFs obtained by empirical
mode decomposition are data driven and thus physically mean-
ingful, empirical mode decomposition has proven effective at
decomposing nonstationary and multi-scale physiological data,
such as electroencephalography (EEG) into different frequency

bands [41] [42] and at extracting respiration rate from PPG
[43].

Within the single channel EMD algorithm [1], firstly a
proto-IMF is defined, and all local maxima and minima of
the signal are extracted and interpolated separately to give
a signal envelope. The mean between these envelopes is
calculated, and removed from the proto-IMF. These steps of
envelope removal are repeated until the proto-IMF satisfies
the following conditions: i) the number of extrema and zero
crossings must differ by at most one (giving an oscillatory
signal) and ii) at any point the mean value of the maxima and
minima envelope must be zero. When the proto-IMF satisfies
these conditions it represents a valid IMF. The steps are
repeated again and more IMFs are extracted until a monotonic
residue or trend is left, or until a set number of IMFs has been
reached.

Multivariate EMD (MEMD) [44] generalises the standard
EMD algorithm to multiple channels and is commonly used
in scenarios such as EEG where multiple channels convey
variants of the same EEG information. A hypersphere of uni-
formly sampled points is generated based on a low-discrepancy
Hammersley sequence and these Q points are used to perform
single-dimensional projects of the signal along the Q direction
vectors. The envelopes of those single-dimensional projections
are extracted and the mean of these envelopes across the Q
direction vectors is taken [1]. As with the original EMD al-
gorithm, these mean envelopes are successively removed from
the input signal and IMFs are extracted for each variate when
the IMF conditions are satisfied. The conditions for IMFs are
modified slightly in MEMD by not imposing the condition
for the number of extrema and zero crossings varying by
at most one [45], as extrema cannot be properly defined for
multivariate signals.

Further, it has been shown that the frequency localisation of
MEMD can be improved by adding adjacent independent noise
channels to MEMD, a concept called noise assisted multivari-
ate empirical mode decomposition (NA-MEMD) [44]. The
NA-MEMD performs especially well on real world physio-
logical data, helping to extract physically meaningful intrinsic
mode functions.

To extract respiratory waveforms from PPG, we employed
the raw photophlethysmography signal, the pulse interval
variations and the pulse amplitude variations as the three main
channels in NA-MEMD, given that the commonality between
the intensity mode, the pulse amplitude mode and the pulse
interval mode is the respiratory information. Therefore, rather
than using different recording channels as our inputs, our
main inputs are instead all derived from the same PPG signal.
Five white Gaussian noise channels are added to improve
frequency localisation and reduce the mode mixing between
the IMFs. This produces IMFs for each of the three respiratory
modes. Only the IMFs for the raw PPG signal were used to
reconstruct the respiratory waveform, given that the intensity
based modulations are not limited in sample rate to the pulse
frequency and therefore contain more detailed high frequency
respiratory information. A respiratory IMF was defined as an
IMF with over a third of its spectral power between 0.2Hz
and 0.6Hz, allowing higher frequency respiratory detail to



TABLE I
SUMMARY OF FEATURES USED FOR CLASSIFICATION OF COPD

Category Features
COPD based skewness, duty cycle,

max− | min |, normalised max− | min |†
General Standard deviation, kurtosis,

spectral skewness, breathing frequency
† Normalisation corresponds to division by the standard deviation.

be captured. The respiratory IMFs were then summed to
reconstruct the respiration signal. This achieved physically
meaningful respiratory waveforms which vary both in ampli-
tude and frequency across the respiratory band.

An example of NA-MEMD decomposition and reconstruc-
tion is shown in Fig. 3. The subject adhered to a 1:3 inspiration
to expiration time ratio, similar to respiratory waveforms
typical of severe chronic obstructive pulmonary disease. It
can be seen that despite the lowest frequency respiratory
IMF capturing the base frequency of respiration, it lacks the
detail captured in the higher frequency IMFs which help to
illuminate the difference in inspiration to expiration time ratio.
This is an argument for using methods such as empirical mode
decomposition over standard filter banks when trying to extract
physically meaningful respiratory waveforms.

D. Classification of COPD

For the classification of chronic obstructive disease we
focused extracting features based on the COPD waveform,
given that we desire to be able to classify COPD not just in
comparisons with healthy data but relative to other respiratory
diseases. Whilst respiration frequency itself is an important
feature in assessing respiratory health, both COPD and pul-
monary fibrosis lead to an increase in breaths per minute,
making it a poor feature for distinguishing between the two
when used alone.

Six in-ear PPG recordings were used from ear finger com-
parisons and labelled as young and healthy. Therefore in total
there were 6 young healthy subjects aged 21 - 28 years, 4 older
healthy subjects aged 56-62 years, 4 subjects with COPD aged
55 - 88 years and 2 subjects with idiopathic pulmonary fibrosis
(IPF) aged 61 and 68 years. The 120 second recordings of
PPG data from each subject were trimmed to remove motion
artifacts occurring at the start and end of the recordings,
and pulse interval and pulse amplitude variation signals were
extracted. The NA-MEMD was then performed on the PPG,
pulse interval and pulse amplitude signals for each subject
independently. Respiratory signals were then reconstructed
from the respiratory intrinsic mode functions, and 15-second
epochs without the presence of motion artifacts were selected.
Each 15-second epoch was rounded off so that the number
of breathing cycles was an integer; in this way, 15 segments
were extracted for COPD, 10 for IPF, 18 for young healthy
and 16 for older healthy, resulting in a total of 59 segments.
During inspiration, the raw PPG decreases in intensity, and
therefore for convenience the waveforms were flipped so that
peaks represented peak inspiration, and troughs represented
peak expiration.

Features were chosen by accounting for the principle that
COPD mainly obstructs expiration, and thus expiration takes
up a larger proportion of the total breathing time, while resting
inspiratory flow rates are usually higher than expiratory flow
rates. The skewness, duty cycle and the difference between the
maximum value and the absolute of the minimum value were
extracted as COPD related features. Skewness is defined as

S(y) =
E(y−µ)3

σ3 (1)

where S(y) denotes the skewness of a signal y, E(x) represents
the expected value of x, µ is the mean of the signal y, and σ is
the standard deviation of y. Distributions with a longer positive
tail than negative tail therefore have a positive skewness,
and distributions with a longer negative tail have a negative
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skewness. Similarly, distributions that are symmetrical have
zero skewness.

For our implementation, duty cycle was defined as time
spent in inspiration divided by time spent in expiration. Given
that the respiration induced intensity variation of PPG is a
proxy for flow rate and assuming the mean flow rate is
zero, time spent above the mean of the flipped waveform
corresponds to inspiration, and time spent below the mean
to expiration. Thus, inspiratory duty cycle was calculated by
dividing the number of samples above the mean by the number
of samples below the mean as follows

D(y) = ∑
N
n=1 H(y(n)−µ)

∑
N
n=1 H(µ− y(n))

(2)

where D(y) corresponds to the duty cycle of a signal y, N
represents the sample number, µ is the mean of the signal y,
and H represents the Heaviside function. Overall, a total of 8
features were used for classification, and are summarised in
Table I.

For classification, features were used to train a random for-
est classifier, employed using the scikit-learn Python toolbox
[46]. For the random forest base, the number of trees was
set to 50, the class weight was set to ’balanced subsample’
and the maximum number of features was set to 3. Binary
classification was performed with the COPD data being la-
beled as such, and the young healthy, older healthy and IPF
data being labelled as non-COPD. Both leave-one-segment-out
and leave-one-subject-out cross validation methods were used.
In the case of leave-one-segment-out, a summed confusion
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matrix was used to evaluate performance, and in the case of
leave-one-subject-out the mean classifier probability for COPD
was taken over all segments for that subject, and an ensemble
average was taken over 5 different train-test realisations.

IV. RESULTS

A. Spectral Power of In-Ear PPG vs Finger PPG
The log10 ear to finger respiratory power ratios for the three

respiratory modes of respiration induced intensity variations
(RIIVs), pulse amplitude variations and pulse interval varia-
tions for 11 subjects are presented in Fig. 4(a). The boxplots
presented in Fig. 4(b) show median log10 ratio values of 0.927
for RIIV, 0.463 for pulse amplitude variations and -0.002 for
pulse interval variations, corresponding to an average of an
8.5-fold increased RIIV power from the ear compared to the
finger, a 2.9-fold increase in pulse amplitude power from the
ear and no change in the power of the pulse interval variation
between the ear and the finger. A one sample t-test rejected the
null-hypothesis that the log10 ratios had a distribution mean
of zero in the case of the RIIV and pulse amplitude ratios
(p = 0.0008, p = 0.01) and did not reject the null hypothesis
in the case of the pulse interval power ratios (p = 0.79). When
comparing the ratios and normalised respiratory peak values
across the sexes (5 female, and 6 male) the only significant
difference found was an increased pulse interval variation
power in the finger in females compared with males (p= 0.04)
and whilst an increased pulse interval variation power was also
seen in the ear in females, it was not significant (p = 0.15).

B. Classification of COPD from In-ear PPG
The COPD data in general showed higher skewness than

non-COPD data. Fig. 5 exemplifies that the COPD waveform
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Fig. 8. Classification of COPD from in-ear PPG respiratory waveforms. (a)
The mean confusion matrix for leave-one-segment-out cross validation, with
the rows corresponding to the true COPD and non-COPD allocations, and the
columns corresponding to the predictions of COPD and non-COPD. (b) The
mean COPD probabilities extracted from the random forest classifier across
each segment for a given subject, and ensemble averaged over 5 realisations.
The error bars correspond to the standard deviation of the segment mean over
5 realisations. The COPD subjects are designated in blue, IPF in red, older
healthy in yellow and young healthy in green.

is more likely to have higher amplitude inspiratory peaks when
compared with expiratory troughs, thus giving the waveform
distribution a positive tail and therefore a positive skew
as highlighted through the histograms. The distribution of
skewness between older healthy, young healthy, COPD and
IPF is summarised in the boxplots in Fig. 6(a), and shows
that overall the skewness of COPD segments tends to be
higher with a median of 0.23 and an interquartile range of
0.20 to 0.48, compared with an older healthy median of -
0.14 and IQR of -0.23 to 0.02, a young healthy median of
-0.03 and IQR of -0.20 to 0.02 and an IPF median of -
0.05 and IQR of -0.24 to 0.11. The change in duty cycle
in COPD from in-ear PPG was less pronounced than the
difference in skewness, but in general TI/TTOT was lower in
COPD as shown in Fig. 6(b). The median duty cycle in COPD
was 46.7%, compared with 50.0%, 51.4% and 50.5% in the
older healthy, young healthy and IPF subjects, respectively.
The distribution of normalised difference in inspiratory and
expiratory magnitude was similar to skewness, with values
above zero corresponding to increased inspiratory magnitude
and values below zero corresponding to increased expiratory
magnitude. Fig. 6(c) shows that COPD skewness values trend
higher with a median of 0.37 and an IQR of 0.30 to 0.86,
compared with an older healthy median of -0.32 and IQR
of -0.56 to -0.08, a young healthy median of -0.03 and IQR
of -0.29 to 0.16 and an IPF median of 0.17 and IQR of -
0.42 to 0.19. Artificial obstruction mirrored COPD across all



features, with a median skewness of 0.26, a median duty cycle
of 47.0% and a median normalised difference in inspiratory
and expiratory magnitude of 0.41, compared to median values
of 0.23, 46.7% and 0.37 in COPD.

All features were calculated on clean segments of data, with
segments with motion artefacts being ignored. Fig. 7 highlights
that motion artefacts can distort the features, with an example
of feature calculation in an artefact corrupted COPD recording.
It is shown that features diverge from what is expected for
COPD towards what is expected for young healthy participants
when a motion artifact is present, which in this case would
lead to miss-classification.

Average classification accuracy for leave-one-segment-out
cross validation was 92%, with class specific accuracy of
87% for COPD, and 93% for non-COPD. These results are
presented in the confusion matrix in Fig. 8(a). Moreover,
classification of COPD had a precision of 81% and an F-score
of 84%. In the leave-one-subject-out cross validation results,
the COPD probability was extracted from the random forest
classifier and the mean was calculated across testing segments
for each subject, with the ensemble average of this probability
then taken over 5 realisations. The 4 COPD subjects had the 4
highest classifier probabilities of COPD, as shown in Fig. 8(b).
In both cases of leave one subject and leave-one-segment-
out, the 2 most important features for classification, based on
the reduction of tree impurity in the random forest, were the
skewness and the normalised difference between the maximum
and absolute minimum.

V. DISCUSSION

A. Spectral Power of In-Ear PPG vs Finger PPG

The increased respiration induced intensity variation power
of roughly 8.5-fold that we see from the ear over the finger
is in good agreement with Budidha et al [18], Nilsson et al
[19] and Shelley et al [17], but is in contrast to the findings
of Charlton et al [21]. In addition, we also see in increased
spectral power of pulse amplitude variations due to respiration
from the ear, again in contrast to Chartlon et al [21], and no
change in power for pulse interval variations. In the case of the
work by Charlton et al, the authors explain that the difference
may be due an increased signal to noise ratio from the finger
sensor, whereas we have accounted for differences in signal
quality in our calculations. One possible explanation for the
increased power that we see in the amplitude variations from
the ear is that the ear canal vasculature is in close proximity
to the carotid artery, and therefore a more exaggerated pulse
amplitude variation might be expected.

Moreover, we do not see a significant difference in RIIVs
between the sexes for the ear or finger sensors which is in
agreement with Nilsson et al [22]. Similarly we do not see a
significant difference in the pulse amplitude variations between
sexes from the ear and finger, and we do not see a significant
difference in the pulse interval variations between sexes from
the ear. We do, however, see a significantly higher respiratory
power for pulse interval variations in the finger from females,
which is in agreement with Li et al [16].

B. Classification of COPD from In-ear PPG

In the extracted in-ear PPG respiratory waveforms, we found
an increased skewness of the data distribution towards inspira-
tion, higher inspiratory magnitudes compared with expiratory
magnitudes and decreased inspiratory duty cycle in those
with COPD, compared with young healthy subjects, older
healthy subjects and patients with IPF. Theoretically, these
differences were expected, given COPD manifests itself in
obstruction to expiration which results in a lower FEV1/FVC
when testing with spirometry, and therefore in a shorter time
spent inspiring and a higher peak inspiratory flow compared
with expiratory flow at rest. Importantly, when breathing was
artificially obstructed with tubes that restricted expiration more
than inspiration, the analysis showed the same trends as with
COPD. This provides further justification that the chosen
features discriminate obstructive breathing disorders. The duty
cycle differences were not as pronounced from the ear-PPG as
those from chest wall measurements in the literature [33] [34],
and were higher for all COPD and non-COPD subjects. In the
case of the recorded 1:3 inspiration to expiration example,
presented in Fig. 3, the flow data had a inspiratory duty
cycle 26%, whereas the in-ear PPG extracted waveform had
a calculated duty cycle of 37%. Similarly, flow data had a
skewness = 1.5 compared with a skewness = 0.9 in the in-
ear PPG waveform. This is evidence for waveform differences
in breathing being less pronounced from the in-ear PPG than
in the ground truth air flow, and is a possible explanation for
why the differences from the ear waveforms recorded in COPD
patients are less pronounced than the chest wall measurements
in the literature. A similar duty cycle and skewness to the
extracted in-ear PPG waveforms was achieved by low-pass
filtering the spirometry flow data in Fig .3, with a cut off
frequency of 0.33Hz. This is evidence that the reduction in
COPD differences shown from in-ear PPG is likely caused by
the transfer function from thoracic pressure to venous return
which has low-pass filter effects [14]. This effect may also be
exaggerated by patients with COPD on average having higher
resting respiration frequencies.

Analysis of data corrupted by artefacts, shown in Fig. 7,
highlights that motion artefacts can indeed distort the extracted
features, and thus for the classification of COPD it is recom-
mended that artefact corrupted segments are discarded. This
however, does not affect the utility of the proposed method-
ology, as with this method classification can be performed
on data recorded at rest where artefacts are far less common
than during movement such as walking. Furthermore, with
only a few clean breathing cycles required to achieve an
accurate prediction, the negative impact of artefacts is further
reduced. Motion artefacts are generally of a broadband nature,
with a peak frequency that is at least an order of magnitude
higher than the peak frequency of PPG derived respiratory
waveforms; this makes it straightforward to identify and reject
artefact-corrupted segments.

Using features extracted from in-ear PPG waveforms seg-
ments that were less than 15 seconds long, a random forest
classifier was able to distinguish between COPD and non-
COPD with a specificity of 87% and overall accuracy of



92% in leave-one-segment-out cross validation. Moreover, the
fact that the highest mean classifier probabilities all occurred
in COPD subjects with leave-one-subject-out cross validation
demonstrates that the in-ear PPG features, described in this
paper, are robust enough to generalise across COPD patients
even with only 3 training subjects. Notably, COPD was classi-
fied against the young healthy data, older healthy data and IPF
patient data, which reinforces our claim that we are detecting
COPD and not just differences that could occur in general
breathing disorders or with age. Importantly, this indicates
that the respiratory variations detected in the in-ear PPG are
strong enough to preserve information that goes beyond the
respiration frequency. With more subjects, the accuracy and
ability of the model to generalise would likely increase further.

VI. CONCLUSION

We have demonstrated the principle and robustness of in-
ear PPG as a tool for detecting respiration frequency. It
has been shown to exhibit increased spectral power over the
finger PPG due to respiration for both respiration induced
intensity variations and pulse amplitude variations. Further,
we have introduced a novel method for extracting respiratory
waveforms from PPG, based on noise assisted multivariate
empirical mode composition (NA-MEMD), and have proven
that so extracted in-ear PPG breathing waveforms contain
sufficient information to detect differences that occur with
obstructive breathing disorders such as chronic obstructive
pulmonary disease (COPD). This has been further validated
quantitatively when classifying COPD against healthy subjects
and subjects with pulmonary fibrosis, and through comparison
with artificially obstructed breathing. This has indicated the
promise of in-ear PPG as a means for both screening and
ambulatory monitoring of patients with respiratory disorders,
and as a tool for detailed breathing analysis in consumer
wearables which goes beyond just respiration frequency.
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[14] A. Johansson and P. Å. Öberg, “Estimation of respiratory volumes from
the photoplethysmographic signal. Part 2: A model study,” Medical and
Biological Engineering and Computing, vol. 37, no. 1, pp. 48–53, 1999.

[15] S. Khreis, D. Ge, H. A. Rahman, and G. Carrault, “Breathing Rate
Estimation Using Kalman Smoother with Electrocardiogram and Pho-
toplethysmogram,” IEEE Transactions on Biomedical Engineering,
vol. 67, no. 3, pp. 893–904, Mar 2020.

[16] J. Li, J. Jin, X. Chen, W. Sun, and P. Guo, “Comparison of respiratory-
induced variations in photoplethysmographic signals,” Physiological
Measurement, vol. 31, no. 3, pp. 415–425, Feb 2010.

[17] K. H. Shelley, D. H. Jablonka, A. A. Awad, R. G. Stout, H. Rezkanna,
and D. G. Silverman, “What Is the Best Site for Measuring the Effect of
Ventilation on the Pulse Oximeter Waveform?” Anesthesia & Analgesia,
vol. 103, no. 2, pp. 372–377, Aug 2006.

[18] K. Budidha and P. A. Kyriacou, “In vivo investigation of ear canal
pulse oximetry during hypothermia,” Journal of Clinical Monitoring and
Computing, vol. 32, no. 1, pp. 97–107, Feb 2018.

[19] L. Nilsson, T. Goscinski, S. Kalman, L.-G. Lindberg, and A. Johansson,
“Combined photoplethysmographic monitoring of respiration rate and
pulse: a comparison between different measurement sites in spon-
taneously breathing subjects,” Acta Anaesthesiologica Scandinavica,
vol. 51, no. 9, pp. 1250–1257, Aug 2007.

[20] W. P. Santamore and J. N. Amoore, “Buffering of respiratory variations
in venous return by right ventricle: A theoretical analysis,” American
Journal of Physiology - Heart and Circulatory Physiology, vol. 267,
Dec 1994.

[21] P. H. Charlton, T. Bonnici, L. Tarassenko, J. Alastruey, D. A. Clifton,
R. Beale, and P. J. Watkinson, “Extraction of respiratory signals from
the electrocardiogram and photoplethysmogram: Technical and physio-
logical determinants,” Physiological Measurement, vol. 38, no. 5, pp.
669–690, Mar 2017.

[22] L. Nilsson, T. Goscinski, A. Johansson, L. G. Lindberg, and S. Kalman,
“Age and gender do not influence the ability to detect respiration by
photoplethysmography,” Journal of Clinical Monitoring and Computing,
vol. 20, no. 6, pp. 431–436, Oct 2006.

[23] V. Goverdovsky, W. Von Rosenberg, T. Nakamura, D. Looney, D. J.
Sharp, C. Papavassiliou, M. J. Morrell, and D. P. Mandic, “Hearables:
Multimodal physiological in-ear sensing,” Scientific Reports, vol. 7,
no. 1, pp. 1–10, Dec 2017.



[24] D. Looney, P. Kidmose, C. Park, M. Ungstrup, M. Rank, K. Rosenkranz,
and D. Mandic, “The in-the-ear recording concept: User-centered and
wearable brain monitoring,” IEEE Pulse, vol. 3, no. 6, pp. 32–42, 2012.

[25] T. Nakamura, Y. D. Alqurashi, M. J. Morrell, and D. P. Mandic,
“Hearables: Automatic Overnight Sleep Monitoring with Standardized
In-Ear EEG Sensor,” IEEE Transactions on Biomedical Engineering,
vol. 67, no. 1, pp. 203–212, Jan 2020.

[26] G. Hammour, M. Yarici, W. V. Rosenberg, and D. P. Mandic, “Hearables:
Feasibility and Validation of In-Ear Electrocardiogram,” in Proceedings
of the Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, EMBS. IEEE, Jul 2019, pp. 5777–5780.

[27] B. Venema, N. Blanik, V. Blazek, H. Gehring, A. Opp, and S. Leonhardt,
“Advances in reflective oxygen saturation monitoring with a novel in-ear
sensor system: Results of a human hypoxia study,” IEEE Transactions
on Biomedical Engineering, vol. 59, no. 7, pp. 2003–2010, 2012.

[28] B. Venema, J. Schiefer, V. Blazek, N. Blanik, and S. Leonhardt,
“Evaluating Innovative In-Ear Pulse Oximetry for Unobtrusive Cardio-
vascular and Pulmonary Monitoring During Sleep,” IEEE Journal of
Translational Engineering in Health and Medicine, vol. 1, pp. 2 700 208–
2 700 208, Aug 2013.

[29] H. J. Davies, I. Williams, N. S. Peters, and D. P. Mandic, “In-Ear SpO2:
A Tool for Wearable, Unobtrusive Monitoring of Core Blood Oxygen
Saturation,” Sensors, vol. 20, no. 17, p. 4879, Aug 2020.

[30] M. Xie, X. Liu, X. Cao, M. Guo, and X. Li, “Trends in prevalence
and incidence of chronic respiratory diseases from 1990 to 2017,”
Respiratory Research, vol. 21, no. 1, p. 49, Feb 2020.

[31] N. Snell, D. Strachan, R. Hubbard, J. Gibson, E. Limb, R. Gupta,
A. Martin, M. Laffan, and I. Jarrold, “Burden of lung disease in the
UK; findings from the British Lung Foundation’s ”respiratory health of
the nation” project,” in European Respiratory Journal, vol. 48, no. suppl
60. European Respiratory Society (ERS), Sep 2016, p. PA4913.

[32] G. Viegi, F. Pistelli, D. L. Sherrill, S. Maio, S. Baldacci, and L. Carrozzi,
“Definition, epidemiology and natural history of COPD,” European
Respiratory Journal, vol. 30, no. 5, pp. 993–1013, Nov 2007.

[33] M. J. Tobin, T. S. Chadha, G. Jenouri, S. J. Birch, H. B. Gazeroglu,
and M. A. Sackner, “Breathing Patterns: 2. Diseased Subjects,” Chest,
vol. 84, no. 3, pp. 286–294, 1983.

[34] H. Wilkens, B. Weingard, A. Lo Mauro, E. Schena, A. Pedotti, G. W.
Sybrecht, and A. Aliverti, “Breathing pattern and chest wall volumes
during exercise in patients with cystic fibrosis, pulmonary fibrosis and
COPD before and after lung transplantation,” Thorax, vol. 65, no. 9, pp.
808–814, 2010.

[35] A. M. Russell, H. Adamali, P. L. Molyneaux, P. T. Lukey, R. P. Marshall,
E. A. Renzoni, A. U. Wells, and T. M. Maher, “Daily home spirometry:
An effective tool for detecting progression in idiopathic pulmonary
fibrosis,” American Journal of Respiratory and Critical Care Medicine,
vol. 194, no. 8, pp. 989–997, Oct 2016.

[36] K. K. Dames, A. J. Lopes, and P. L. De Melo, “Airflow pattern
complexity during resting breathing in patients with COPD: Effect of
airway obstruction,” Respiratory Physiology and Neurobiology, vol. 192,
no. 1, pp. 39–47, Feb 2014.

[37] S. A. Shah, C. Velardo, A. Farmer, and L. Tarassenko, “Exacerbations
in chronic obstructive pulmonary disease: Identification and prediction
using a digital health system,” Journal of Medical Internet Research,
vol. 19, no. 3, p. e69, Mar 2017.

[38] H. Yamazaki and K. Fujimoto, “A new noninvasive method for measure-
ment of dynamic lung compliance from fluctuations on photoplethys-
mography in respiration,” Journal of Applied Physiology, vol. 130, no. 1,
pp. 215–225, Jan 2021.

[39] V. Goverdovsky, D. Looney, P. Kidmose, and D. P. Mandic, “In-Ear
EEG From Viscoelastic Generic Earpieces: Robust and Unobtrusive 24/7
Monitoring,” IEEE Sensors Journal, vol. 16, no. 1, pp. 271–277, Jan
2016.

[40] H. J. Davies, G. Hammour, and D. P. Mandic, “An apparatus for the
simulation of breathing disorders: Physically meaningful generation of
surrogate data,” arXiv preprint arXiv:2109.06699, Sep 2021.

[41] T. M. Rutkowski, J. Dauwels, F. Vialatte, A. Cichocki, and D. P. Mandic,
“Time-frequency and synchrony analysis of responses to steady-state
auditory and musical stimuli from multichannel EEG.”

[42] D. Looney, C. Park, Y. Xia, P. Kidmose, M. Ungstrup, and D. P. Mandic,
“Towards estimating selective auditory attention from EEG using a
novel time-frequency-synchronisation framework,” in Proceedings of the
International Joint Conference on Neural Networks, 2010, pp. 1–5.

[43] K. V. Madhav, M. R. Ram, E. H. Krishna, N. R. Komalla, and K. A.
Reddy, “Estimation of respiration rate from ECG, BP and PPG signals
using empirical mode decomposition,” in Conference Record - IEEE

Instrumentation and Measurement Technology Conference, 2011, pp.
1661–1664.

[44] N. Ur Rehman, C. Park, N. E. Huang, and D. P. Mandic, “EMD
via MEMD: Multivariate noise-aided computation of standard EMD,”
Advances in Adaptive Data Analysis, vol. 05, no. 02, p. 1350007, Apr
2013.

[45] N. Rehman and D. P. Mandic, “Multivariate empirical mode decompo-
sition,” Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 466, no. 2117, pp. 1291–1302, May 2010.

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duch-
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