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ABSTRACT

Introduction: Forced vital capacity is the only
registrational endpoint in idiopathic pul-
monary fibrosis clinical trials. As most new
treatments will be administered on top of
standard of care, estimating treatment response
will become more challenging. We developed a

simulation model to quantify variability asso-
ciated with forced vital capacity decline.
Methods: The model is based on publicly
available clinical trial summary and home
spirometry data. A single, illustrative trial set-
ting is reported. Model assumptions are 400
subjects randomised 1:1 to investigational drug
or placebo over 52 weeks, 50% of each group
receiving standard of care (all-comer popula-
tion), and a 90-mL treatment difference in
annual forced vital capacity decline. Longitu-
dinal profiles were simulated and the impact of
varying clinical scenarios evaluated.
Results: Power to detect a significant treatment
difference was 87–97%, depending on the
analysis method. Repeated measures analysis
generally outperformed analysis of covariance
and mixed linear models, particularly with
missing data (as simulated data were non-lin-
ear). A 15% yearly random dropout rate led to
0.6–5% power loss. Forced vital capacity
decline-related dropout introduced greater
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power loss (up to 12%), as did subjects starting/
stopping standard of care or investigational
drug. Power was substantially lower for a
26-week trial due to the smaller assumed treat-
ment effect at week 26 (sample size would need
doubling to reach a power similar to that of a
52-week trial).
Conclusions: Our model quantifies forced vital
capacity decline and associated variability, with
all the caveats of background therapy, permit-
ting robust power calculations to inform future
idiopathic pulmonary fibrosis clinical trial
design.
Funding: Galapagos NV (Mechelen, Belgium).

Keywords: Data simulation; Forced vital
capacity; Idiopathic pulmonary fibrosis;
Modelling; Respiratory

INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is charac-
terised by progressive fibrosis and high mortal-
ity [1, 2]. Current standard of care (SOC) is
treatment with the antifibrotic agents pir-
fenidone or nintedanib [3, 4], which slow, but
do not halt, progression [5–7]. Both are associ-
ated with side effects, such as gastrointestinal
and skin-related adverse events, which con-
tribute to treatment discontinuation rates of
21–26% [8]. New treatments with fewer side
effects are needed.

Forced vital capacity (FVC) decline is a sur-
rogate endpoint for death in IPF studies [9] and
formed the basis of the US Food and Drug
Administration (FDA) approval of pirfenidone

and nintedanib [10]. Novel drugs will likely need
to demonstrate efficacy with respect to FVC
when administered on top of SOC, which will be
challenging. Given the complexities of such
trials, it is essential to understand the range of
FVC decline in this setting. Modelling and sim-
ulations can predict the pattern of decline under
different scenarios and inform trial design and
power calculations. However, modelling to
estimate treatment effects is not straightforward
and interpretation is complicated by many fac-
tors. These include intrinsic variability of FVC,
influence of co-morbidities, uncertainty about
treatment response durability, and variable
time–exposure relationships due to dose inter-
ruptions, dose reductions and change of SOC
treatment—particularly in trials of long dura-
tion. Mortality, dropouts and uncertainty
regarding the predictive value of prior FVC
decline in assessing treatment response add to
this complexity [11, 12]. Owing to these diffi-
culties, uncertainties and misconceptions exist
regarding the pattern of FVC decline.

We established a model based on publicly
available summary data from recent clinical
trials and home spirometry data from a study in
patients with IPF. Our aim was to quantify the
variability associated with FVC decline to model
effects of an investigational drug when given on
top of background SOC therapy. We used an
illustrative example to highlight our findings,
which can be adapted or extended to other trial
settings.

METHODS

In our model, we used source data to simulate
longitudinal FVC profiles. Then, using a sim-
plified study design, we interrogated the clinical
trial setting and analysed data using three dif-
ferent statistical methods to determine treat-
ment effect size, variability and study power.
We did this under a variety of scenarios (such as
differing trial dropout rates, reduced investiga-
tional drug dose, a change in background
treatment and reduced trial duration). We then
evaluated the effects of each of these scenarios
on treatment effect size, variability and study
power.
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Source Data

Publicly available summary data were obtained
from the FDA medical review of nintedanib
[13, 14], including 1066 patients in the double-
blind, randomised, placebo-controlled phase 3
INPULSIS trials and 432 patients in a ran-
domised, placebo-controlled, dose-ranging
phase 2 study [7, 15]. Pirfenidone data were
excluded because the primary endpoint in key
studies was percentage predicted FVC (ppFVC),
rather than FVC. Daily home spirometry data
were obtained from a study in which 50 patients
with IPF provided daily FVC readings over a
median of 279 days [16]. These data confirmed
previous observations of the clinical course of
IPF [17], correlated well with hospital-based
assessment of FVC and, as measurements were
daily, were more sensitive in predicting disease
outcome [16].

Model Assumptions and Correlation
Structure

Forced vital capacity data were simulated from a
multivariate normal distribution, with mean,
variance and correlation structure as shown in
Table 1. From observed variability in source
data, it can be shown that baseline and week 52
FVC are strongly correlated, with a Pearson
correlation coefficient of 0.94. A continuous
autoregressive model of order 1, CAR(1) [18],
was used to specify pairwise correlations
between FVC measurements from the same
subject at any time point. CAR(1) was selected
because it is a straightforward, but realistic,
structure for this longitudinal data setting. It
assumes that FVC correlation decreases as time
between measurements increases, which
implies that the variability of FVC change from
baseline increases over time (as observed in
source data). Also, it fitted well to daily
spirometry data (see ‘‘Results’’). As pirfenidone
source data were excluded, assumptions for
pirfenidone were the same as for nintedanib.
Poor predictability of FVC decline to inform
future disease progression has been reported in
clinical studies [11, 12, 19, 20]. Nathan et al.
[12] reported that changes in ppFVC during two

consecutive 6-month intervals had a weak
negative correlation (correlation coefficient,
- 0.146, p\0.001). To assess if this could be
reproduced using our model, the analysis
described by Nathan and colleagues [12] was
performed for 10,000 simulations.

Table 1 Data simulation assumptions

Assumption Volume
(mL)

Source data for
assumption

Actual values

Mean FVC at baseline 2700 Nintedanib

[7, 13, 15]

SD at baseline 800 Nintedanib

[7, 13, 15] and

daily spirometry

[16]

Constant SD over

time

800 Nintedanib [13]

and daily

spirometry [16]

Change from baseline

SD at week 52 275 Nintedanib

[7, 13, 15]

Increasing SD over

time

CAR(1)

Placebo group

Mean FVC decline

over time by strata

(SOC/no SOC)a

Nintedanib

[7, 13, 15]

Week 2 2/5

Week 4 5/15

Week 12 25/80

Week 24 50/110

Week 52 95/205

CAR(1) continuous-time autoregressive model of order 1,
FVC forced vital capacity, SD standard deviation, SOC
standard of care (pirfenidone/nintedanib)
a Time points for data reported in the literature were
extrapolated to those used in the model by a piecewise
linear function
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Statistical Analysis

Simulated FVC data were analysed by (1) an
analysis of covariance model (ANCOVA) per
time point with FVC change from baseline as a
dependent variable and baseline FVC and
treatment as covariates; (2) a repeated measures
analysis (MMRM) with FVC change from base-
line as a dependent variable and baseline FVC,
treatment and time (categorical) as covariates,
using an autoregressive error covariance struc-
ture; and (3) a linear mixed model (LMM) with
FVC actual values as a dependent variable,
treatment and time (continuous) as fixed
effects and a random intercept and slope (this
model assumed a linear trend over time).
MMRM and LMM use all available data; there-
fore, missing data are implicitly accounted for.
Fitting these models to the data allowed
assessment of the treatment difference in FVC
decline, variability (described using 95% con-
fidence intervals, CIs), and the power to detect
a significant result (proportion of significant
simulations, at 5% significance level). R (ver-
sion 3.5.2.) software was used for simulations
and statistical analysis.

Base Simulation Setting

In our illustrative clinical trial setting, we
assumed that 400 subjects with IPF would be
randomised 1:1 to investigational drug or pla-
cebo, across two strata. It was assumed that half
were taking SOC (pirfenidone/nintedanib) at
the start of the study and half were not. Subjects
were not required to remain on SOC, but could
stop/start SOC during the trial, therefore repre-
senting an all-comer patient population. Simu-
lations encompassed FVC measurements at
weeks 0, 2, 4, 8, 12, 18, 26, 34, 42 and 52.
Assumed treatment difference in FVC change
from baseline at week 52 for investigational
drug versus placebo was 90 mL overall (60 mL
for subjects on background pirfenidone/ninte-
danib, 120 mL for subjects who were not on
background therapy). These were considered
realistic assumptions based on the extrapolation
of treatment effects reported in IPF trials, such

as INSTAGE (mean change from baseline in FVC
at week 24, - 20.8 mL for nintedanib plus
sildenafil vs - 58.2 mL for nintedanib alone)
[21], INJOURNEY (mean change from baseline
in FVC at week 12, - 13.3 mL for nintedanib
plus pirfenidone vs - 40.9 mL for nintedanib
alone) [22] and a phase 2 trial of an investiga-
tional drug PBI-4050 (mean change from base-
line in FVC at week 12, ? 2 mL for nintedanib
plus PBI-4050) [23].

Simulation Scenarios

We modelled various trial scenarios to estimate
their effects on FVC decline in our illustrative
trial setting and potential implications for trial
design and powering. First, we evaluated the
potential impact of missing data due to subjects
(1) randomly dropping out of the trial (at an
annual rate of less than or equal to 15%); (2)
dropping out at different rates in the two
treatment groups; (3) dropping out due to an
observed/unobserved decrease in FVC decline.
We then modelled the effect of initiating SOC
during the trial in placebo subjects who were
not taking SOC prior to trial initiation. We
modelled scenarios in which subjects on SOC
discontinued or lowered their dose of investi-
gational drug (the treatment effect of the lower
dose was assumed to be half that of the higher
dose; this assumption was made for modelling
purposes to clearly illustrate an effect and not
based on real data). We also assessed the com-
bined effect of dropout and initiating SOC
within the same scenario. In addition, we eval-
uated the effects of shortening trial length from
52 to 26 weeks. Finally, we assessed the effect of
disease progression in placebo subjects not
receiving SOC. Subjects were categorised as
‘rapid’ or ‘slow’ progressors according to FVC
decline in 6 months (greater than 10% or less
than 10% decline, respectively) and this was
compared with the following 6 months. This
analysis was performed to re-evaluate the results
reported by Biondini and co-workers [24],
which showed that pirfenidone treatment led to
a greater reduction in the rate of FVC decline in
‘rapid’ versus ‘slow’ progressors.
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Compliance with Ethics Guidelines

This article is based on previously conducted
studies and does not contain any studies with
human participants or animals performed by
any of the authors.

RESULTS

Simulation Model and Correlation
Structure

Examples of data simulation outputs are shown
in Figs. 1, 2 and 3 (individual profiles for Figs. 2,
3 are presented in Figs. S1 and S2, respectively—
see the electronic supplementary material).

The CAR(1) correlation structure provided a
good fit to daily spirometry data. A more com-
plex, flexible model incorporating a random
slope and intercept in addition to a CAR(1) error
covariance matrix was also assessed, but

provided only a slightly better fit (improvement
of 0.7% in Akaike information criterion),
implying that the CAR(1) model is sufficient for
capturing the underlying correlation structure.
Under this assumption, a similar result as
described by Nathan and colleagues [12] was
found: mean correlation coefficient between
FVC decline in the first and second 6-month
intervals for placebo subjects not receiving SOC
over 10,000 simulations was - 0.014 (95% CI
- 0.21, 0.18).

Base Simulation Setting

Our modelled 52-week clinical trial had a power
of 87–97% to detect a significant treatment
difference (Table 2 and Fig. 4). LMM performed
less well (higher variability and lower power)
than other models in this base setting with
complete data (due to the model’s linearity

Fig. 1 Examples of FVC data simulation output using
our illustrative clinical trial setting. Ten randomly
selected profiles fromsubjects with idiopathic pulmonary
fibrosis randomised to investigational drug (a) or placebo

(b), with half taking SOC (pirfenidone/nintedanib) at
the start of the study. FVC forced vital capacity, SOC
standard of care
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assumption and the fact that the simulated data
do not follow a perfect linear trend).

Simulation Scenarios

The impact of dropout scenarios on treatment
effect is presented in Table 2. For dropout
occurring randomly (missing completely at
random, MCAR) at yearly rates of 5%, 10% or
15%, power loss was moderate (up to 5%) and,
as expected, ANCOVA was impacted most. The
same held true when dropout rates differed
between treatment groups; however, this
introduced a small bias in the treatment differ-
ence as estimated by LMM: a higher dropout
with placebo versus drug led to a small overes-
timation of treatment effect and vice versa. In
contrast, the impact was more pronounced for
FVC decline-related dropout. ANCOVA per-
formed poorly in both scenarios, i.e. when
dropout resulted from an observed, confirmed
FVC decline of greater than 10% (missing at
random, MAR) and when dropout preceded an
unobserved, confirmed FVC decline of greater
than 10% (missing not at random, MNAR).
Treatment effect was underestimated; power
loss was 9% and 12%, respectively. MMRM and
LMM performed better in this setting. Results
were affected moderately under MNAR (power
loss of 3% for MMRM and 5% for LMM).

Moreover, MMRM was robust to dropout under
MAR, whereas LMM led to an overestimation of
treatment effect (94.4 mL; 95% CI 32.4, 157.0).
This is due to the linearity assumption of the
LMM; in this setting there is higher dropout
with placebo versus drug and because dropout
follows a steep decline in FVC, the slope esti-
mate is lower than if the full profile was
observed.

Power loss would occur if placebo subjects
switched from no SOC to SOC from week 26
onwards (Table 3; up to 9% if 50% switched).
Similar effects were observed if subjects receiv-
ing SOC were to discontinue investigational
drug (10% power loss if 50% discontinued). This
impact would be smaller (up to 4% loss) if
subjects down-titrated to a lower dose of
investigational drug, assumed to elicit half the
treatment effect of the higher dose.

When combining a 5% dropout under
MNAR with 15% of subjects switching from no
SOC to SOC from week 26 onwards, as an
example of a real-world setting, impact was
moderate; power for all methods was still
greater than 80% (lowest power of 82% for
LMM).

Shortening the trial from 52 to 26 weeks
would reduce the power (Fig. 4). Sample size
would need to increase to 400 per group to
reach similar power as for the 52-week trial

Fig. 2 Examples of two data simulation outputs (a,
b) using our illustrative clinical trial setting. Each plot
shows mean change from baseline (with and without SOC;

pirfenidone/nintedanib) from one simulation (n = 200 per
treatment arm). FVC forced vital capacity, SEM standard
error of the mean, SOC standard of care
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simulation. For ANCOVA and MMRM, this is
due to the decrease in assumed treatment effect
in change from baseline at week 26, which
outweighs the smaller variability. LMM esti-
mates the same underlying yearly rate (90 mL),
and is affected by increased variability due to
fewer observed data points at week 26.

For placebo subjects not receiving SOC, and
on stable placebo treatment for 52 weeks, FVC
decline in the second 6-month period would be
significantly reduced for ‘rapid progressors’
(358 mL in the first period, 70 mL in the second;
p\0.0001), illustrating a case of ‘regression to
the mean’. For ‘slow progressors’ FVC decline
would be increased (49 mL in the first period,
90 mL in the second; p = 0.14).

DISCUSSION

Forced vital capacity is intrinsically variable
and, when coupled with the unpredictable na-
ture of IPF disease progression, evaluating
change in this measure is difficult, particularly
on a per patient basis over long periods of time.
In addition, clinical trials in IPF are complex
and likely to become more so as studies begin to
investigate treatment combinations. Therefore,
we used a variety of trial scenario simulations to
understand the nature of the problem, utilising
nintedanib summary data and home spirometry
data from IPF patients. In our simulation set-
ting, 400 subjects (with or without background
SOC therapy) were randomised 1:1 to investi-
gational drug or placebo. Our modelling esti-
mated that, assuming a treatment difference of
90 mL at 1 year, this illustrative trial would have
87–97% power to detect a significant treatment
effect. We found that several complexities
inherent to an all-comer population, such as
subjects starting/stopping treatment, could
impact the primary analysis results. We illus-
trated how certain causes of dropout (MAR and
MNAR) could result in a biased treatment effect
and power decline. Furthermore, reducing trial
duration from 52 to 26 weeks would require a
considerably larger sample size to achieve a
similar power. Results of mixed models (MMRM
and LMM) were quite robust to the scenarios
under consideration, and were only markedly
affected by extreme scenarios. These results are
an illustration of the capabilities of the model in
informing clinical trial design and highlight
aspects that could be adapted for application to
other clinical trial settings.

Nathan and colleagues demonstrated that
changes in ppFVC during two consecutive
6-month intervals had a weak negative correla-
tion, concluding that this was indicative of
substantial variability [12]. Our simulation
results confirmed that a weak negative correla-
tion is also observed under our assumed corre-
lation structure. Moreover, it can be shown that
under any CAR(1) structure, independent of the
assumed variability, true correlation between
FVC changes in consecutive time intervals for
subjects receiving the same treatment (SOC or

Fig. 3 Examples of two data simulation outputs (a, b result
from simulation 1; c, d result from simulation 2) using
ourillustrative clinical trial setting. Each row shows mean
change from baseline from one simulation, with (a, c) and
without (b, d) SOC (pirfenidone/nintedanib) treatment
(n =100 per treatment group–strata combination). FVC
forced vital capacity, SEM standard error of the mean,
SOC standard of care
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investigational drug) is always negative. Fur-
thermore, the higher the autocorrelation
between FVC measurements, the closer the
correlation between consecutive FVC changes
will be to zero. Thus, a weak negative correla-
tion between FVC changes does not necessarily
imply high variability. Rather, we suggest that it
could indicate that the subjects under consid-
eration follow the same underlying mean FVC
trend, with highly correlated observations over
time.

Others have also investigated the pre-
dictability of FVC decline for future lung func-
tion progression. Analysis of a large
multicentre, retrospective cohort of patients
with IPF showed that change in pulmonary
function in the previous year was not a good
predictor of subsequent changes, but did predict
mortality in the following 12 months [11].

Another study similarly showed that FVC
decline was not predictive of short-term risk of
disease progression, but did predict respiratory
hospitalisations and death [19]. A post hoc
analysis of the nintedanib INPULSIS trial
reported that FVC decline in the first 24 weeks
did not predict decline in the subsequent
24 weeks [20] but did predict mortality at
52 weeks. These findings support our observa-
tions and have important implications for
clinical practice.

In further support of this notion, Biondini
et al. [24] reported that pirfenidone significantly
reduced the rate of FVC decline and that this
was more pronounced in ‘rapid’ versus ‘slow’
progressors. However, we suggest that such
conclusions cannot be drawn on the basis of the
design of Biondini’s study (which lacked a pla-
cebo group), as similar results were obtained in

Table 2 Impact of dropout rates on estimated treatment effect, variability and power

Yearly
dropout
rates

ANCOVA Repeated measures analysis Linear mixed model

Mean estimate
[95% CI] (mL)

Power
(%)

SEM Mean estimate
[95% CI] (mL)

Power
(%)

SEM Mean estimate
[95% CI] (mL)

Power
(%)

SEM

Base case

0% 89.7 [36.2, 144.3] 90.3 27.4 89.6 [36.4, 144.5] 97.3 27.5 89.7 [32.9, 147.2] 86.7 29.1

Overall

5% 89.7 [36.0, 144.7] 88.9 27.8 89.6 [36.2, 144.1] 97.3 27.6 89.7 [32.7, 147.4] 85.7 29.2

10% 89.8 [33.8, 146.7] 87.5 28.7 89.7 [34.4, 145.7] 96.9 28.3 89.5 [31.1, 147.8] 84.9 29.8

15% 89.8 [32.5, 147.4] 85.1 29.5 89.8 [34.6, 146.7] 96.7 28.7 89.7 [32.1, 149.5] 83.3 30.3

Higher dropout rate in placebo group than drug group

20% vs

10%

89.8 [31.7, 148.2] 85.3 29.7 89.9 [33.8, 146.3] 96.5 28.7 91.9 [31.7, 151.2] 85.4 30.4

Higher dropout rate in drug group than placebo group

20% vs

10%

90.0 [32.0, 148.0] 85.6 29.4 89.8 [32.3, 146.2] 96.3 28.7 87.6 [27.2, 147.0] 82.0 30.3

Dropout in subjects with observed and confirmed FVC decline of more than 10% relative to baseline

15% 78.1 [25.1, 132.0] 81.1 27.4 86.7 [33.3, 141.0] 96.5 27.6 94.4 [32.4, 157.0] 85.2 31.5

Dropout in subjects with unobserved and confirmed FVC decline of more than 10% relative to baseline

15% 75.0 [21.8, 128.0] 78.1 27.3 78.0 [25.8, 130.3] 94.6 26.8 81.5 [26.7, 137.8] 81.8 28.2

ANCOVA analysis of covariance, CI confidence interval, SEM standard error of the mean
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Fig. 4 Estimated treatment difference from 10,000 data
simulations in a 26-week (a) and a 52-week clinical trial
setting (b). For each trial duration, results of 10,000
simulations analysed via three different statistical methods

(ANCOVA, LMM and MMRM) are shown. ANCOVA
analysis of covariance, LMM linear mixed model, MMRM
repeated measures analysis

Table 3 Impact of changes to SOC and investigational drug on estimated treatment effect, variability and power

Subjects
affected

ANCOVA Repeated measures analysis Linear mixed model

Mean estimate
[95% CI] (mL)

Power
(%)

SEM Mean estimate
[95% CI] (mL)

Power
(%)

SEM Mean estimate
[95% CI] (mL)

Power
(%)

SEM

Base case

0% 89.7 [36.2, 144.3] 90.3 27.4 89.6 [36.4, 144.5] 97.3 27.5 89.7 [32.9, 147.2] 86.7 29.1

Placebo subjects starting SOC treatment from week 26 onwards

25% 84.6 [31.2, 137.5] 87.3 27.0 84.6 [31.6, 137.8] 96.1 27.1 84.4 [28.1, 141.4] 83.3 28.8

50% 78.8 [25.0, 132.3] 82.4 27.2 78.8 [25.2, 132.9] 93.6 27.2 78.7 [22.0, 135.7] 77.7 28.7

Subjects on SOC treatment lowering investigational drug dose

25% 87.4 [33.9, 139.6] 89.3 26.9 87.4 [33.9, 140.2] 96.9 27.0 87.3 [31.0, 144.2] 85.5 28.8

50% 84.4 [30.6, 137.6] 86.8 27.2 84.4 [30.7, 137.9] 96.0 27.3 84.2 [27.3, 140.9] 83.0 28.8

Subjects on SOC treatment discontinuing investigational drug

25% 84.4 [30.5, 137.1] 86.8 27.1 84.4 [30.7, 137.7] 95.8 27.2 84.1 [27.9, 141.0] 82.2 28.9

50% 78.3 [24.9, 131.9] 81.6 27.2 78.3 [25.0, 132.3] 93.7 27.2 77.7 [20.7, 134.8] 76.6 28.8

ANCOVA analysis of covariance, CI confidence interval, SEM standard error of the mean, SOC standard of care
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our simulations of placebo data, without an
underlying treatment effect. Thus, there is a
need to differentiate between treatment effect
and the untreated longitudinal behaviour of
FVC to avoid, in this case, overestimation of
treatment effect in ‘rapid progressors’ and
underestimation in ‘slow progressors’, which is
a typical example of regression to the mean.
Additionally, while its longitudinal behaviour is
interesting for modelling purposes, the clinical
implication of a decline in FVC of 10% is that it
is associated with a higher risk of mortality in
the near term. The clinical pattern after a
decline of this magnitude varies from early
death to the other extreme of a significantly
slower decline in FVC. This may not be obvious
in shorter trials and is more obvious over longer
periods [11]. Thus, the terms ‘rapid progressor’
and ‘slow progressor’ are likely a misnomer.

A strength of the current analysis is that it
illustrates the feasibility of quantifying FVC
variability using a relatively simple model and
the impact of clinical trial scenarios in a SOC
setting. This modelling is assumption-based,
which is subject to inherent limitations (for
example, to examine the effects of lowering
dose, we made an assumption regarding the
dose–response nature of the treatment effect,
which may vary between investigational drugs).
However, we believe that the assumptions are
reasonable and, as they are based on publicly
available data, they can be updated as more data
become available. Source data partially came
from daily home monitoring of FVC by
patients, which has shown good agreement
with hospital-recorded spirometry [16, 25]. A
limitation of the study is that the data on which
the model is based were obtained from clinical
trial populations which, by their nature, are
subject to selection biases. While this may
accurately reflect clinical research patient pop-
ulations, it may limit the application of the
model to real-world settings. However, the
robustness of the model can be further
improved as additional source data sets become
available. Finally, we were unable to explicitly
model some clinical aspects affecting FVC in
individual patients—such as acute IPF exacer-
bations or underlying genetic factors—although
these likely contribute to the reported

variability in the literature, thus having an
implicit impact on the model.

CONCLUSIONS

Future clinical trials of IPF treatments will likely
need to demonstrate the effect of an investiga-
tional drug on top of SOC. We demonstrate that
many clinical scenarios, such as FVC decline-
related dropout, starting/stopping treatment,
and a shortened clinical trial period, can affect
power calculations in such trials. While the
LMM model performed less well in terms of
variability and power than ANCOVA or MMRM
with complete data, LMM and MMRM per-
formed better under the tested scenarios. We
demonstrate the need to distinguish between
treatment effect and underlying changes in FVC
to correctly attribute changes to treatment,
background therapy, or FVC variation. These
findings will help optimise future clinical trial
design.
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