191 research outputs found

    Imputation of non-genotyped individuals based on genotyped relatives: assessing the imputation accuracy of a real case scenario in dairy cattle

    Get PDF
    Background Imputation of genotypes for ungenotyped individuals could enable the use of valuable phenotypes created before the genomic era in analyses that require genotypes. The objective of this study was to investigate the accuracy of imputation of non-genotyped individuals using genotype information from relatives. Methods Genotypes were simulated for all individuals in the pedigree of a real (historical) dataset of phenotyped dairy cows and with part of the pedigree genotyped. The software AlphaImpute was used for imputation in its standard settings but also without phasing, i.e. using basic inheritance rules and segregation analysis only. Different scenarios were evaluated i.e.: (1) the real data scenario, (2) addition of genotypes of sires and maternal grandsires of the ungenotyped individuals, and (3) addition of one, two, or four genotyped offspring of the ungenotyped individuals to the reference population. Results The imputation accuracy using AlphaImpute in its standard settings was lower than without phasing. Including genotypes of sires and maternal grandsires in the reference population improved imputation accuracy, i.e. the correlation of the true genotypes with the imputed genotype dosages, corrected for mean gene content, across all animals increased from 0.47 (real situation) to 0.60. Including one, two and four genotyped offspring increased the accuracy of imputation across all animals from 0.57 (no offspring) to 0.73, 0.82, and 0.92, respectively. Conclusions At present, the use of basic inheritance rules and segregation analysis appears to be the best imputation method for ungenotyped individuals. Comparison of our empirical animal-specific imputation accuracies to predictions based on selection index theory suggested that not correcting for mean gene content considerably overestimates the true accuracy. Imputation of ungenotyped individuals can help to include valuable phenotypes for genome-wide association studies or for genomic prediction, especially when the ungenotyped individuals have genotyped offspring

    Proteome sequence features carry signatures of the environmental niche of prokaryotes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prokaryotic environmental adaptations occur at different levels within cells to ensure the preservation of genome integrity, proper protein folding and function as well as membrane fluidity. Although specific composition and structure of cellular components suitable for the variety of extreme conditions has already been postulated, a systematic study describing such adaptations has not yet been performed. We therefore explored whether the environmental niche of a prokaryote could be deduced from the sequence of its proteome. Finally, we aimed at finding the precise differences between proteome sequences of prokaryotes from different environments.</p> <p>Results</p> <p>We analyzed the proteomes of 192 prokaryotes from different habitats. We collected detailed information about the optimal growth conditions of each microorganism. Furthermore, we selected 42 physico-chemical properties of amino acids and computed their values for each proteome. Further, on the same set of features we applied two fundamentally different machine learning methods, Support Vector Machines and Random Forests, to successfully classify between bacteria and archaea, halophiles and non-halophiles, as well as mesophiles, thermophiles and mesothermophiles. Finally, we performed feature selection by using Random Forests.</p> <p>Conclusions</p> <p>To our knowledge, this is the first time that three different classification cases (domain of life, halophilicity and thermophilicity) of proteome adaptation are successfully performed with the same set of 42 features. The characteristic features of a specific adaptation constitute a signature that may help understanding the mechanisms of adaptation to extreme environments.</p

    Integrated Ecosystem Assessment: Lake Ontario Water Management

    Get PDF
    BACKGROUND: Ecosystem management requires organizing, synthesizing, and projecting information at a large scale while simultaneously addressing public interests, dynamic ecological properties, and a continuum of physicochemical conditions. We compared the impacts of seven water level management plans for Lake Ontario on a set of environmental attributes of public relevance. METHODOLOGY AND FINDINGS: Our assessment method was developed with a set of established impact assessment tools (checklists, classifications, matrices, simulations, representative taxa, and performance relations) and the concept of archetypal geomorphic shoreline classes. We considered each environmental attribute and shoreline class in its typical and essential form and predicted how water level change would interact with defining properties. The analysis indicated that about half the shoreline of Lake Ontario is potentially sensitive to water level change with a small portion being highly sensitive. The current water management plan may be best for maintaining the environmental resources. In contrast, a natural water regime plan designed for greatest environmental benefits most often had adverse impacts, impacted most shoreline classes, and the largest portion of the lake coast. Plans that balanced multiple objectives and avoided hydrologic extremes were found to be similar relative to the environment, low on adverse impacts, and had many minor impacts across many shoreline classes. SIGNIFICANCE: The Lake Ontario ecosystem assessment provided information that can inform decisions about water management and the environment. No approach and set of methods will perfectly and unarguably accomplish integrated ecosystem assessment. For managing water levels in Lake Ontario, we found that there are no uniformly good and bad options for environmental conservation. The scientific challenge was selecting a set of tools and practices to present broad, relevant, unbiased, and accessible information to guide decision-making on a set of management options

    Change in basic motor abilities, quality of movement and everyday activities following intensive, goal-directed, activity-focused physiotherapy in a group setting for children with cerebral palsy

    Get PDF
    Background: The effects of intensive training for children with cerebral palsy (CP) remain uncertain. The aim of the study was to investigate the impact on motor function, quality of movements and everyday activities of three hours of goal-directed activity-focused physiotherapy in a group setting, five days a week for a period of three weeks. Methods: A repeated measures design was applied with three baseline and two follow up assessments; immediately and three weeks after intervention. Twenty-two children with hemiplegia (n = 7), diplegia (n = 11), quadriplegia (n = 2) and ataxia (n = 2) participated, age ranging 3-9 y. All levels of Gross Motor Function Classification System (GMFCS) and Manual Ability Classification System (MACS) were represented. Parents and professionals participated in goal setting and training. ANOVA was used to analyse change over repeated measures. Results: A main effect of time was shown in the primary outcome measure; Gross Motor Function Measure-66 (GMFM- 66), mean change being 4.5 (p < 0.01) from last baseline to last follow up assessment. An interaction between time and GMFCS-levels was found, implying that children classified to GMFCS-levels I-II improved more than children classified to levels III-V. There were no main or interaction effects of age or anti-spastic medication. Change scores in the Pediatric Evaluation of Disability Inventory (PEDI) ranged 2.0-6.7, p < 0.01 in the Self-care domain of the Functional Skills dimension, and the Self-care and Mobility domains of the Caregiver Assistance dimension. The children's individual goals were on average attained, Mean Goal Attainment Scaling (GAS) T-score being 51.3. Non-significant improved scores on the Gross Motor Performance Measure (GMPM) and the Quality of Upper Extremities Skills Test (QUEST) were demonstrated. Significant improvement in GMPM scores were found in improved items of the GMFM, not in items that maintained the same score. Conclusions: Basic motor abilities and self-care improved in young children with CP after goal-directed activityfocused physiotherapy with involvement of their local environment, and their need for caregiver assistance in self-care and mobility decreased. The individualized training within a group context during a limited period of time was feasible and well-tolerated. The coherence between acquisition of basic motor abilities and quality of movement should be further examined

    Racial/Ethnic Disparities in Inadequate Gestational Weight Gain Differ by Pre-pregnancy Weight

    Full text link
    OBJECTIVES: Pre-pregnancy body mass index (BMI) varies by race/ethnicity and modifies the association between gestational weight gain (GWG) and adverse pregnancy outcomes, which disproportionately affect racial/ethnic minorities. Yet studies investigating whether racial/ethnic disparities in GWG vary by pre-pregnancy BMI are inconsistent, and none studied nationally representative populations. METHODS: Using categorical measures of GWG adequacy based on Institute of Medicine recommendations, we investigated whether associations between race/ethnicity and GWG adequacy were modified by pre-pregnancy BMI [underweight (<18.5kg/m(2)), normal weight (18.5-24.9 kg/m(2)), overweight (25.0-29.9 kg/m(2)), or obese (≥30.0 kg/m(2)) ] among all births to Black, Hispanic, and White mothers in the 1979 USA National Longitudinal Survey of Youth cohort (n=6849 pregnancies; range=1-10). We used generalized estimating equations, adjusted for marital status, parity, smoking during pregnancy, gestational age, and multiple measures of socioeconomic position. RESULTS: Effect measure modification between race/ethnicity and pre-pregnancy BMI was significant for inadequate GWG (Wald test p-value=0.08). Normal weight Black (Risk Ratio (RR)=1.34, 95% confidence interval (CI): 1.18, 1.52) and Hispanic women (RR=1.33, 95%CI: 1.15, 1.54) and underweight Black women (RR=1.38; 95% CI: 1.07, 1.79) experienced an increased risk of inadequate GWG compared to Whites. Differences in risk of inadequate GWG between minority women, compared to White women, were not significant among overweight and obese women. Effect measure modification between race/ethnicity and pre-pregnancy BMI was not significant for excessive GWG. CONCLUSIONS: The magnitude of racial/ethnic disparities in inadequate GWG appears to vary by pre-pregnancy weight class, which should be considered when designing interventions to close racial/ethnic gaps in healthy GWG

    Microglial activation and chronic neurodegeneration

    Get PDF
    Microglia, the resident innate immune cells in the brain, have long been implicated in the pathology of neurode-generative diseases. Accumulating evidence points to activated microglia as a chronic source of multiple neurotoxic factors, including tumor necrosis factor-α, nitric oxide, interleukin-1β, and reactive oxygen species (ROS), driving progressive neuron damage. Microglia can become chronically activated by either a single stimulus (e.g., lipopolysaccharide or neuron damage) or multiple stimuli exposures to result in cumulative neuronal loss with time. Although the mechanisms driving these phenomena are just beginning to be understood, reactive microgliosis (the microglial response to neuron damage) and ROS have been implicated as key mechanisms of chronic and neurotoxic microglial activation, particularly in the case of Parkinson’s disease. We review the mechanisms of neurotoxicity associated with chronic microglial activation and discuss the role of neuronal death and microglial ROS driving the chronic and toxic microglial phenotype

    Initiating maize pre-breeding programs using genomic selection to harness polygenic variation from landrace populations

    Get PDF
    BACKGROUND: The limited genetic diversity of elite maize germplasms raises concerns about the potential to breed for new challenges. Initiatives have been formed over the years to identify and utilize useful diversity from landraces to overcome this issue. The aim of this study was to evaluate the proposed designs to initiate a pre-breeding program within the Seeds of Discovery (SeeD) initiative with emphasis on harnessing polygenic variation from landraces using genomic selection. We evaluated these designs with stochastic simulation to provide decision support about the effect of several design factors on the quality of resulting (pre-bridging) germplasm. The evaluated design factors were: i) the approach to initiate a pre-breeding program from the selected landraces, doubled haploids of the selected landraces, or testcrosses of the elite hybrid and selected landraces, ii) the genetic parameters of landraces and phenotypes, and iii) logistical factors related to the size and management of a pre-breeding program. RESULTS: The results suggest a pre-breeding program should be initiated directly from landraces. Initiating from testcrosses leads to a rapid reconstruction of the elite donor genome during further improvement of the pre-bridging germplasm. The analysis of accuracy of genomic predictions across the various design factors indicate the power of genomic selection for pre-breeding programs with large genetic diversity and constrained resources for data recording. The joint effect of design factors was summarized with decision trees with easy to follow guidelines to optimize pre-breeding efforts of SeeD and similar initiatives. CONCLUSIONS: Results of this study provide guidelines for SeeD and similar initiatives on how to initiate pre-breeding programs that aim to harness polygenic variation from landraces. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-2345-z) contains supplementary material, which is available to authorized users

    Telomeric DNA induces apoptosis and senescence of human breast carcinoma cells

    Get PDF
    INTRODUCTION: Cancer is a leading cause of death in Americans. We have identified an inducible cancer avoidance mechanism in cells that reduces mutation rate, reduces and delays carcinogenesis after carcinogen exposure, and induces apoptosis and/or senescence of already transformed cells by simultaneously activating multiple overlapping and redundant DNA damage response pathways. METHODS: The human breast carcinoma cell line MCF-7, the adriamycin-resistant MCF-7 (Adr/MCF-7) cell line, as well as normal human mammary epithelial (NME) cells were treated with DNA oligonucleotides homologous to the telomere 3' overhang (T-oligos). SCID mice received intravenous injections of MCF-7 cells followed by intravenous administration of T-oligos. RESULTS: Acting through ataxia telangiectasia mutated (ATM) and its downstream effectors, T-oligos induced apoptosis and senescence of MCF-7 cells but not NME cells, in which these signaling pathways were induced to a far lesser extent. In MCF-7 cells, experimental telomere loop disruption caused identical responses, consistent with the hypothesis that T-oligos act by mimicking telomere overhang exposure. In vivo, T-oligos greatly prolonged survival of SCID mice following intravenous injection of human breast carcinoma cells. CONCLUSION: By inducing DNA damage-like responses in MCF-7 cells, T-oligos provide insight into innate cancer avoidance mechanisms and may offer a novel approach to treatment of breast cancer and other malignancies
    corecore