60 research outputs found
Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions
Functional traits are expected to modulate plant competitive dynamics. However, how traits
and their plasticity in response to contrasting environments connect with the mechanisms
determining species coexistence remains poorly understood. Here, we couple field experiments
under two contrasting climatic conditions to a plant population model describing
competitive dynamics between 10 annual plant species in order to evaluate how 19 functional
traits, covering physiological, morphological and reproductive characteristics, are associated
with species’ niche and fitness differences. We find a rich diversity of univariate and multidimensional
associations, which highlight the primary role of traits related to water- and lightuse-
efficiency for modulating the determinants of competitive outcomes. Importantly, such
traits and their plasticity promote species coexistence across climatic conditions by enhancing
stabilizing niche differences and by generating competitive trade-offs between species.
Our study represents a significant advance showing how leading dimensions of plant function
connect to the mechanisms determining the maintenance of biodiversity
Protein misfolding and dysregulated protein homeostasis in autoinflammatory diseases and beyond.
Cells have a number of mechanisms to maintain protein homeostasis, including proteasome-mediated degradation of ubiquitinated proteins and autophagy, a regulated process of ‘self-eating’ where the contents of entire organelles can be recycled for other uses. The unfolded protein response prevents protein overload in the secretory pathway. In the past decade, it has become clear that these fundamental cellular processes also help contain inflammation though degrading pro-inflammatory protein complexes such as the NLRP3 inflammasome. Signaling pathways such as the UPR can also be co-opted by toll-like receptor and mitochondrial reactive oxygen species signaling to induce inflammatory responses. Mutations that alter key inflammatory proteins, such as NLRP3 or TNFR1, can overcome normal protein homeostasis mechanisms, resulting in autoinflammatory diseases. Conversely, Mendelian defects in the proteasome cause protein accumulation, which can trigger interferon-dependent autoinflammatory disease. In non-Mendelian inflammatory diseases, polymorphisms in genes affecting the UPR or autophagy pathways can contribute to disease, and in diseases not formerly considered inflammatory such as neurodegenerative conditions and type 2 diabetes, there is increasing evidence that cell intrinsic or environmental alterations in protein homeostasis may contribute to pathogenesis
Nitrated α–Synuclein Immunity Accelerates Degeneration of Nigral Dopaminergic Neurons
The neuropathology of Parkinson's disease (PD) includes loss of dopaminergic neurons in the substantia nigra, nitrated alpha-synuclein (N-alpha-Syn) enriched intraneuronal inclusions or Lewy bodies and neuroinflammation. While the contribution of innate microglial inflammatory activities to disease are known, evidence for how adaptive immune mechanisms may affect the course of PD remains obscure. We reasoned that PD-associated oxidative protein modifications create novel antigenic epitopes capable of peripheral adaptive T cell responses that could affect nigrostriatal degeneration.Nitrotyrosine (NT)-modified alpha-Syn was detected readily in cervical lymph nodes (CLN) from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxicated mice. Antigen-presenting cells within the CLN showed increased surface expression of major histocompatibility complex class II, initiating the molecular machinery necessary for efficient antigen presentation. MPTP-treated mice produced antibodies to native and nitrated alpha-Syn. Mice immunized with the NT-modified C-terminal tail fragment of alpha-Syn, but not native protein, generated robust T cell proliferative and pro-inflammatory secretory responses specific only for the modified antigen. T cells generated against the nitrated epitope do not respond to the unmodified protein. Mice deficient in T and B lymphocytes were resistant to MPTP-induced neurodegeneration. Transfer of T cells from mice immunized with N-alpha-Syn led to a robust neuroinflammatory response with accelerated dopaminergic cell loss.These data show that NT modifications within alpha-Syn, can bypass or break immunological tolerance and activate peripheral leukocytes in draining lymphoid tissue. A novel mechanism for disease is made in that NT modifications in alpha-Syn induce adaptive immune responses that exacerbate PD pathobiology. These results have implications for both the pathogenesis and treatment of this disabling neurodegenerative disease
Suppression of MAPK attenuates neuronal cell death induced by activated glia-conditioned medium in alpha-synuclein overexpressing SH-SY5Y cells
General Didactics and Instructional Design: eyes like twins A transatlantic dialogue about similarities and differences, about the past and the future of two sciences of learning and teaching
Activation of heat-shock response by an adenovirus is essential for virus replication
Successful viral infection requires viruses to redirect host biochemistry to replicate the viral genome, and produce and assemble progeny virions. Cellular heat-shock responses, which are characterized as elevation and relocalization of heat-shock proteins, occur during replication of many viruses1,2,3,4,5,6,7. Such responses might be host reactions to the synthesis of foreign protein, or might be irrelevant consequences of the viral need to activate transcription. Alternatively, as heat-shock proteins can facilitate protein folding8,9, activating a heat-shock response might be a specific virus function ensuring proper synthesis of viral proteins and virions. It is not possible to determine whether heat-shock response is essential for virus replication, because the implicated viral genes (such as Ad5 E1A, ref. 10) also control other essential replication steps. Here we report that expression of Gam1, a protein encoded by the avian virus CELO (ref. 11), elevates and relocalizes hsp70 and hsp40. Gam1-negative CELO is replication-defective; however, Gam1 function can be partially replaced by either heat shock or forced hsp40 expression. Thus, an essential function of Gam1 during virus replication is to activate host heat-shock responses with hsp40 as a primary target
- …
