99 research outputs found
Chronic obstructive pulmonary disease – diagnosis and classification of severity
Chronic obstructive pulmonary disease (COPD) is a common, progressive and preventable non-communicable respiratory disorder. It is often confused with asthma and poorly understood by many lay people. The primary cause of COPD is tobacco smoking, but in the South African (SA) context, biomass fuel exposure/household pollution, tuberculosis, HIV and mining exposure are additional important causes. There is a very high prevalence of COPD in SA and it is the third leading cause of mortality globally. The diagnosis of COPD is based predominantly on symptoms, i.e. progressive shortness of breath and cough in a patient with risk factors – usually smoking. Lung function testing is required to formally make the diagnosis, which places a significant hurdle in correctly identifying COPD in SA, given the limited access to spirometry in many areas. Spirometry is also required to grade the severity of lung function obstruction. Severity assessment, which is used to plan a management strategy (predominantly bronchodilators with inhaled steroids in severe cases), combines symptoms, lung function and exacerbations. Based on these 3 factors, a patient can be categorised into 1 of 4 groups and appropriate management instituted. Additional comorbidities, particularly cardiovascular and mental illness, should also be evaluated. Early identification of COPD, with further avoidance of an aetiological cause such as smoking, is key in preventing disease progression. Appropriate therapy, comprising non-pharmacological and pharmacological interventions and based on a comprehensive severity assessment, should result in symptom improvement and reduced risk for exacerbation
Adherence to isoniazid preventive therapy in Indonesian children: A quantitative and qualitative investigation
<p>Abstract</p> <p>Background</p> <p>It is recommended that young child contacts of sputum smear positive tuberculosis cases receive isoniazid preventive therapy (IPT) but reported adherence is low and risk factors for poor adherence in children are largely unknown.</p> <p>Methods</p> <p>We prospectively determined rates of IPT adherence in children < 5 yrs in an Indonesian lung clinic. Possible risk factors for poor adherence, defined as ≤3 months prescription collection, were calculated using logistic regression. To further investigate adherence barriers in-depth interviews were conducted with caregivers of children with good and poor adherence.</p> <p>Results</p> <p>Eighty-two children eligible for IPT were included, 61 (74.4%) of which had poor adherence. High transport costs (OR 3.3, 95% CI 1.1-10.2) and medication costs (OR 20.0, 95% CI 2.7-414.5) were significantly associated with poor adherence in univariate analysis. Access, medication barriers, disease and health service experience and caregiver TB and IPT knowledge and beliefs were found to be important determinants of adherence in qualitative analysis.</p> <p>Conclusion</p> <p>Adherence to IPT in this setting in Indonesia is extremely low and may result from a combination of financial, knowledge, health service and medication related barriers. Successful reduction of childhood TB urgently requires evidence-based interventions that address poor adherence to IPT.</p
Prevalence and socio-demographic correlates of physical activity levels among South African adults in Cape Town and Mount Frere communities in 2008-2009
BACKGROUND: Physical activity has been linked to reduced risk of various cardiometabolic disease, cancer, and
premature mortality. We investigated the prevalence and socio-demographic correlates of physical activity
among adults in urban and rural communities in South Africa. METHODS: This was a cross-sectional survey
comprising 1733 adults aged ?35 years from the Cape Town (urban) and Mount Frere (rural) sites of the
Prospective Urban Rural Epidemiology study. Physical activity was assessed using the validated International
Physical Activity Questionnaire. Multinomial logistic regressions were used to relate physical activity with
socio-demographic characteristics.
RESULTS: Overall, 74% of participants engaged in moderate-to-vigorous physical activity. In the adjusted regression
models, women were 34% less likely to engage in vigorous physical activity (OR =0.66, 95%-CI = 0.47-0.93). Physical
activity decreased with age, varied with marital status, education and occupation, always in differential ways
between urban and rural participants (all interactions p ? 0.047). For instance, in urban settings, those with
secondary education were more likely to engage in moderate physical activity (OR = 2.06, 95%-CI = 1.08-3.92)
than those with tertiary education. Single people were more likely to engage in high physical activity (OR = 2.10,
95%-CI = 1.03-4.28) than divorced. Overall, skilled participants were more likely to engage in vigorous physical
activity (OR = 2.07, 95%-CI = 1.41-3.05) driven by significant effect in rural area (OR = 2.70, 95%-CI = 1.51-4.83).
Urban participants were more likely to engage in moderate physical activity (OR = 1.67, 95%-CI = 1.31-2.13)
than rural participants.
CONCLUSIONS: To prevent chronic diseases among South Africans, attention should be paid to specific policies
and interventions aimed at promoting PA among young adults in rural and urban setting, and across the
social-economic diversity
Recommended from our members
Heat and moisture budgets from airborne measurements and high-resolution model simulations
High-resolution simulations with a mesoscale model are performed to estimate heat and moisture budgets of a well-mixed boundary layer. The model budgets are validated against energy budgets obtained from airborne measurements over heterogeneous terrain in Western Germany. Time rate of change, vertical divergence, and horizontal advection for an atmospheric column of air are estimated. Results show that the time trend of specific humidity exhibits some deficiencies, while the potential temperature trend is matched accurately. Furthermore, the simulated turbulent surface fluxes of sensible and latent heat are comparable to the measured fluxes, leading to similar values of the vertical divergence. The analysis of different horizontal model resolutions exhibits improved surface fluxes with increased resolution, a fact attributed to a reduced aggregation effect. Scale-interaction effects could be identified: while time trends and advection are strongly influenced by mesoscale forcing, the turbulent surface fluxes are mainly controlled by microscale processes
Multiwavelength Variability Power Spectrum Analysis of the Blazars 3C 279 and PKS 1510-089 on Multiple Timescales
We present the results of variability power spectral density (PSD) analysis using multiwavelength radio to GeV gamma-ray light curves covering timescales of decades/years to days/minutes for the blazars 3C 279 and PKS 1510-089. The PSDs are modeled as single power laws, and the best-fit spectral shape is derived using the "power spectral response" method. With more than 10 yr of data obtained with weekly/daily sampling intervals, most of the PSDs cover similar to 2-4 decades in temporal frequency; moreover, in the optical band, the PSDs cover similar to 6 decades for 3C 279 due to the availability of intranight light curves. Our main results are the following: (1) on timescales ranging from decades to days, the synchrotron and the inverse-Compton spectral components, in general, exhibit red-noise (slope similar to 2) and flicker-noise (slope similar to 1) type variability, respectively; (2) the slopes of gamma-ray variability PSDs obtained using a 3 hr integration bin and 3 weeks total duration exhibit a range between similar to 1.4 and similar to 2.0 (mean slope = 1.60 +/- 0.70), consistent within errors with the slope on longer timescales; (3) comparisons of fractional variability indicate more power on timescales <= 100 days at gamma-ray frequencies compared to longer wavelengths, in general (except between the gamma-ray and optical wavelengths for PKS 1510-089); (4) the normalization of intranight optical PSDs for 3C 279 appears to be a simple extrapolation from longer timescales, indicating a continuous (single) process driving the variability at optical wavelengths; and (5) the emission at optical/infrared wavelengths may involve a combination of disk and jet processes for PKS 1510-089
Expression of Trichoderma reesei β-Mannanase in Tobacco Chloroplasts and Its Utilization in Lignocellulosic Woody Biomass Hydrolysis
Lignocellulosic ethanol offers a promising alternative to conventional fossil fuels. One among the major limitations in the lignocellulosic biomass hydrolysis is unavailability of efficient and environmentally biomass degrading technologies. Plant-based production of these enzymes on large scale offers a cost-effective solution. Cellulases, hemicellulases including mannanases and other accessory enzymes are required for conversion of lignocellulosic biomass into fermentable sugars. β-mannanase catalyzes endo-hydrolysis of the mannan backbone, a major constituent of woody biomass. In this study, the man1 gene encoding β-mannanase was isolated from Trichoderma reesei and expressed via the chloroplast genome. PCR and Southern hybridization analysis confirmed site-specific transgene integration into the tobacco chloroplast genomes and homoplasmy. Transplastomic plants were fertile and set viable seeds. Germination of seeds in the selection medium showed inheritance of transgenes into the progeny without any Mendelian segregation. Expression of endo-β-mannanase for the first time in plants facilitated its characterization for use in enhanced lignocellulosic biomass hydrolysis. Gel diffusion assay for endo-β-mannanase showed the zone of clearance confirming functionality of chloroplast-derived mannanase. Endo-β-mannanase expression levels reached up to 25 units per gram of leaf (fresh weight). Chloroplast-derived mannanase had higher temperature stability (40°C to 70°C) and wider pH optima (pH 3.0 to 7.0) than E.coli enzyme extracts. Plant crude extracts showed 6–7 fold higher enzyme activity than E.coli extracts due to the formation of disulfide bonds in chloroplasts, thereby facilitating their direct utilization in enzyme cocktails without any purification. Chloroplast-derived mannanase when added to the enzyme cocktail containing a combination of different plant-derived enzymes yielded 20% more glucose equivalents from pinewood than the cocktail without mannanase. Our results demonstrate that chloroplast-derived mannanase is an important component of enzymatic cocktail for woody biomass hydrolysis and should provide a cost-effective solution for its diverse applications in the biofuel, paper, oil, pharmaceutical, coffee and detergent industries
Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast
The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein phosphatases in glucose regulation
Snout Shape in Extant Ruminants
Copyright: © 2014 Tennant, MacLeod. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. [4.0 license]. The attached file is the published version of the article
New approaches in the diagnosis and treatment of latent tuberculosis infection
With nearly 9 million new active disease cases and 2 million deaths occurring worldwide every year, tuberculosis continues to remain a major public health problem. Exposure to Mycobacterium tuberculosis leads to active disease in only ~10% people. An effective immune response in remaining individuals stops M. tuberculosis multiplication. However, the pathogen is completely eradicated in ~10% people while others only succeed in containment of infection as some bacilli escape killing and remain in non-replicating (dormant) state (latent tuberculosis infection) in old lesions. The dormant bacilli can resuscitate and cause active disease if a disruption of immune response occurs. Nearly one-third of world population is latently infected with M. tuberculosis and 5%-10% of infected individuals will develop active disease during their life time. However, the risk of developing active disease is greatly increased (5%-15% every year and ~50% over lifetime) by human immunodeficiency virus-coinfection. While active transmission is a significant contributor of active disease cases in high tuberculosis burden countries, most active disease cases in low tuberculosis incidence countries arise from this pool of latently infected individuals. A positive tuberculin skin test or a more recent and specific interferon-gamma release assay in a person without overt signs of active disease indicates latent tuberculosis infection. Two commercial interferon-gamma release assays, QFT-G-IT and T-SPOT.TB have been developed. The standard treatment for latent tuberculosis infection is daily therapy with isoniazid for nine months. Other options include therapy with rifampicin for 4 months or isoniazid + rifampicin for 3 months or rifampicin + pyrazinamide for 2 months or isoniazid + rifapentine for 3 months. Identification of latently infected individuals and their treatment has lowered tuberculosis incidence in rich, advanced countries. Similar approaches also hold great promise for other countries with low-intermediate rates of tuberculosis incidence
- …