74 research outputs found

    The exposure of the Great Barrier Reef to ocean acidification

    Full text link
    © 2016, Nature Publishing Group. All rights reserved. The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation-biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report

    NGTS-13b: A hot 4.8 Jupiter-mass planet transiting a subgiant star

    Get PDF
    We report the discovery of the massive hot Jupiter NGTS-13b by the Next Generation Transit Survey (NGTS). The V = 12.7 host star is likely in the subgiant evolutionary phase with log g_{*} = 4.04 ±\pm 0.05, Teff_{eff} = 5819 ±\pm 73 K, M_{*} = 1.300.18+0.11^{+0.11}_{-0.18} M_{\odot}, and R_{*} = 1.79 ±\pm 0.06 R_{\odot}. NGTS detected a transiting planet with a period of P = 4.12 days around the star, which was later validated with the Transiting Exoplanet Survey Satellite (TESS; TIC 454069765). We confirm the planet using radial velocities from the CORALIE spectrograph. Using NGTS and TESS full-frame image photometry combined with CORALIE radial velocities we determine NGTS-13b to have a radius of RP_{P} = 1.142 ±\pm 0.046 RJup_{Jup}, mass of MP_{P} = 4.84 ±\pm 0.44 MJup_{Jup} and eccentricity e = 0.086 ±\pm 0.034. Some previous studies suggest that \sim4 MJup_{Jup} may be a border between two separate formation scenarios (e.g., core accretion and disk instability) and that massive giant planets share similar formation mechanisms as lower-mass brown dwarfs. NGTS-13b is just above 4 MJup_{Jup} making it an important addition to the statistical sample needed to understand the differences between various classes of substellar companions. The high metallicity, [Fe/H] = 0.25 ±\pm 0.17, of NGTS-13 does not support previous suggestions that massive giants are found preferentially around lower metallicity host stars, but NGTS-13b does support findings that more massive and evolved hosts may have a higher occurrence of close-in massive planets than lower-mass unevolved stars

    NGTS discovery of a highly inflated Saturn-mass planet and a highly irradiated hot Jupiter: NGTS-26 b and NGTS-27 b

    Get PDF
    We report the discovery of two new transiting giant exoplanets NGTS-26 b and NGTS-27 b by the Next Generation Transit Survey (NGTS). NGTS-26 b orbits around a G6-type main sequence star every 4.52 days. It has a mass of 0.29-0.06+0.07 MJup and a radius of 1.33-0.05+0.06 RJup making it a Saturn-mass planet with a highly inflated radius. NGTS-27 b orbits around a slightly evolved G3-type star every 3.37 days. It has a mass of 0.59-0.07+0.10 MJup and a radius of 1.40±0.04 RJup, making it a relatively standard hot Jupiter. The transits of these two planetary systems were re-observed and confirmed in photometry by the SAAO 1.0-m telescope, 1.2-m Euler Swiss telescope as well as the TESS spacecraft, and their masses were derived spectroscopically by the CORALIE, FEROS and HARPS spectrographs. Both giant exoplanets are highly irradiated by their host stars and present an anomalously inflated radius, especially NGTS-26 b which is one of the largest objects among peers of similar mass

    NGTS-11 b (TOI-1847 b): A Transiting Warm Saturn Recovered from a TESS Single-transit Event

    Get PDF
    We report the discovery of NGTS-11 b (=TOI-1847 b), a transiting Saturn in a 35.46-day orbit around a mid K-type star (Teff=5050 K). We initially identified the system from a single-transit event in a TESS full-frame image light-curve. Following seventy-nine nights of photometric monitoring with an NGTS telescope, we observed a second full transit of NGTS-11 b approximately one year after the TESS single-transit event. The NGTS transit confirmed the parameters of the transit signal and restricted the orbital period to a set of 13 discrete periods. We combined our transit detections with precise radial velocity measurements to determine the true orbital period and measure the mass of the planet. We find NGTS-11 b has a radius of 0.817+0.028-0.032 RJR_J, a mass of 0.344+0.092-0.073 MJM_J, and an equilibrium temperature of just 435+34-32 K, making it one of the coolest known transiting gas giants. NGTS-11 b is the first exoplanet to be discovered after being initially identified as a TESS single-transit event, and its discovery highlights the power of intense photometric monitoring in recovering longer-period transiting exoplanets from single-transit events

    Adrenocorticotropic Hormone Suppresses Gonadotropin-Stimulated Estradiol Release from Zebrafish Ovarian Follicles

    Get PDF
    While stress is known to impact reproductive performance, the pathways involved are not entirely understood. Corticosteroid effects on the functioning of the hypothalamus-pituitary-gonadal axis are thought to be a key aspect of stress-mediated reproductive dysfunction. A vital component of the stress response is the pituitary secretion of adrenocorticotropic hormone (ACTH), which binds to the melanocortin 2 receptor (MC2R) in the adrenal glands and activates cortisol biosynthesis. We recently reported MC2R mRNA abundance in fish gonads leading to the hypothesis that ACTH may be directly involved in gonadal steroid modulation. Using zebrafish (Danio rerio) ovarian follicles, we tested the hypothesis that acute ACTH stimulation modulates cortisol and estradiol (E2) secretion. ACTH neither affected cortisol nor unstimulated E2 release from ovarian follicles. However, ACTH suppressed human chorionic gonadotropin (hCG)-stimulated E2 secretion in a dose-related manner, with a maximum decrease of 62% observed at 1 I.U. ACTH mL−1. This effect of ACTH on E2 release was not observed in the presence of either 8-bromo-cAMP or forskolin, suggesting that the mechanism(s) involved in steroid attenuation was upstream of adenylyl cyclase activation. Overall, our results suggest that a stress-induced rise in plasma ACTH levels may initiate a rapid down-regulation of acute stimulated E2 biosynthesis in the zebrafish ovary, underscoring a novel physiological role for this pituitary peptide in modulating reproductive activity

    Elevated Plasma Corticosterone Decreases Yolk Testosterone and Progesterone in Chickens: Linking Maternal Stress and Hormone-Mediated Maternal Effects

    Get PDF
    Despite considerable research on hormone-mediated maternal effects in birds, the underlying physiology remains poorly understood. This study investigated a potential regulation mechanism for differential accumulation of gonadal hormones in bird eggs. Across vertebrates, glucocorticoids can suppress reproduction by downregulating gonadal hormones. Using the chicken as a model species, we therefore tested whether elevated levels of plasma corticosterone in female birds influence the production of gonadal steroids by the ovarian follicles and thus the amount of reproductive hormones in the egg yolk. Adult laying hens of two different strains (ISA brown and white Leghorn) were implanted subcutaneously with corticosterone pellets that elevated plasma corticosterone concentrations over a period of nine days. Steroid hormones were subsequently quantified in plasma and yolk. Corticosterone-implanted hens of both strains had lower plasma progesterone and testosterone levels and their yolks contained less progesterone and testosterone. The treatment also reduced egg and yolk mass. Plasma estrogen concentrations decreased in white Leghorns only whereas in both strains yolk estrogens were unaffected. Our results demonstrate for the first time that maternal plasma corticosterone levels influence reproductive hormone concentrations in the yolk. Maternal corticosterone could therefore mediate environmentally induced changes in yolk gonadal hormone concentrations. In addition, stressful situations experienced by the bird mother might affect the offspring via reduced amounts of reproductive hormones present in the egg as well as available nutrients for the embryo

    Reduced Cortisol and Metabolic Responses of Thin Ewes to an Acute Cold Challenge in Mid-Pregnancy: Implications for Animal Physiology and Welfare

    Get PDF
    Background: Low food availability leading to reductions in Body Condition Score (BCS; 0 indicates emaciation and 5 obesity) in sheep often coincides with low temperatures associated with the onset of winter in New Zealand. The ability to adapt to reductions in environmental temperature may be impaired in animals with low BCS, in particular during pregnancy when metabolic demand is higher. Here we assess whether BCS affects a pregnant animal’s ability to cope with cold challenges. Methods: Eighteen pregnant ewes with a BCS of 2.760.1 were fed to attain low (LBC: BCS2.360.1), medium (MBC: BCS3.260.2) or high BCS (HBC: BCS3.660.2). Shorn ewes were exposed to a 6-h acute cold challenge in a climate-controlled room (wet and windy conditions, 4.460.1uC) in mid-pregnancy. Blood samples were collected during the BCS change phase, acute cold challenge and recovery phase. Results: During the BCS change phase, plasma glucose and leptin concentrations declined while free fatty acids (FFA) increased in LBC compared to MBC (P,0.01, P,0.01 and P,0.05, respectively) and HBC ewes (P,0.05, P,0.01 and P,0.01, respectively). During the cold challenge, plasma cortisol concentrations were lower in LBC than MBC (P,0.05) and HBC ewes (P,0.05), and FFA and insulin concentrations were lower in LBC than HBC ewes (P,0.05 and P,0.001, respectively). Leptin concentrations declined in MBC and HBC ewes while remaining unchanged in LBC ewes (P,0.01). Glucose concentrations and internal body temperature (Tcore) increased in all treatments, although peak Tcore tended to be higher in HBC ewes (P,0.1). During the recovery phase, T4 concentrations were lower in LBC ewes (P,0.05). Conclusion: Even though all ewes were able to increase Tcore and mobilize glucose, low BCS animals had considerably reduced cortisol and metabolic responses to a cold challenge in mid-pregnancy, suggesting that their ability to adapt to cold challenges through some of the expected pathways was reduced

    An ultrahot Neptune in the Neptune desert

    Get PDF
    About one out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultra-short-period planet (Sanchis-ojeda et al. 2014; Winn et al. 2018). All of the previously known ultra-short-period planets are either hot Jupiters, with sizes above 10 Earth radii (Re), or apparently rocky planets smaller than 2 Re. Such lack of planets of intermediate size (the "hot Neptune desert") has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here, we report the discovery of an ultra-short-period planet with a radius of 4.6 Re and a mass of 29 Me, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite (Ricker et al. 2015) revealed transits of the bright Sun-like star \starname\, every 0.79 days. The planet's mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0^(+2.7)_(-2.9)% of the total mass. With an equilibrium temperature around 2000 K, it is unclear how this "ultra-hot Neptune" managed to retain such an envelope. Follow-up observations of the planet's atmosphere to better understand its origin and physical nature will be facilitated by the star's brightness (Vmag=9.8)

    Testosterone, cortisol, and serotonin as key regulators of social aggression: A review and theoretical perspective

    Get PDF
    In human and non-human animals the steroid hormones cortisol and testosterone are involved in social aggression and recent studies suggest that these steroids might jointly regulate this behavior. It has been hypothesized that the imbalance between cortisol and testosterone levels is predictive for aggressive psychopathology, with high testosterone to cortisol ratio predisposing to a socially aggressive behavioral style. In this review, we focus on the effects of cortisol and testosterone on human social aggression, as well as on how they might modulate the aggression circuitry of the human brain. Recently, serotonin is hypothesized to differentiate between impulsive and instrumental aggression, and we will briefly review evidence on this hypothesis. The aim of this article is to provide a theoretical framework for the role of steroids and serotonin in impulsive social aggression in humans
    corecore