255 research outputs found

    Age and growth, reproduction and diet of a sublittoral population of the rock goby Gobius paganellus (Teleostei, Gobiidae)

    Get PDF
    Copyright © 2000 Kluwer Academic Publishers. Printed in the Netherlands.Basic biological information for a sublittoral population of the rock goby Gobius paganellus Linnaeus, 1758 is presented based on a 2-year study involving 1680 specimens. The length-weight relationship was given by TW = 0.0089 * TL^3,163 (where TW= total weight in g; TL= total length in mm). Age at length data were inferred by modal analysis of the monthly length-frequency distributions. The parameters of the fitted Von Bertalanffy growth equation (with seasonal component, birth date on the 1st of January) were L1 = 13.8 cm; K = 0.73 yr^-1; to = -0.22 yr; C = 0.95; W = 0.07. This growth rate is much higher than that described for northern Europe populations (where K is about 0.3 yr^-1) and is probably associated with a shorter life span. Macroscopic examination of the gonads, and analysis of the monthly values of the gonadosomatic index, indicated that reproduction occurs in winter and early spring, with a maximum in February and March, when water temperatures are lowest. Individuals become sexually mature around 6-7 cm TL, a size that can be reached in less than 1 year. By contrast, individuals of this goby in the British Isles mature in their second or third year. Stomach contents were mainly small benthic invertebrates, predominantly crustaceans

    Site directed biotinylation of filamentous phage structural proteins

    Get PDF
    Filamentous bacteriophages have been used in numerous applications for the display of antibodies and random peptide libraries. Here we describe the introduction of a 13 amino acid sequence LASIFEAQKIEWR (designated BT, which is biotinylated in vivo by E. coli) into the N termini of four of the five structural proteins of the filamentous bacteriophage fd (Proteins 3, 7, 8 and 9). The in vivo and in vitro biotinylation of the various phages were compared. The production of multifunctional phages and their application as affinity reagents are demonstrated

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    Strontium ranelate and alendronate have differing effects on distal tibia bone microstructure in women with osteoporosis

    Get PDF
    The structural basis of the antifracture efficacy of strontium ranelate and alendronate is incompletely understood. We compared the effects of strontium ranelate and alendronate on distal tibia microstructure over 2 years using HR-pQCT. In this pre-planned, interim, intention-to-treat analysis at 12 months, 88 osteoporotic postmenopausal women (mean age 63.7 ± 7.4) were randomized to strontium ranelate 2 g/day or alendronate 70 mg/week in a double-placebo design. Primary endpoints were changes in microstructure. Secondary endpoints included lumbar and hip areal bone mineral density (aBMD), and bone turnover markers. This trial is registered with http://www.controlled-trials.com, number ISRCTN82719233. Baseline characteristics of the two groups were similar. Treatment with strontium ranelate was associated with increases in mean cortical thickness (CTh, 5.3%), cortical area (4.9%) and trabecular density (2.1%) (all P < 0.001, except cortical area P = 0.013). No significant changes were observed with alendronate. Between-group differences in favor of strontium ranelate were observed for CTh, cortical area, BV/TV and trabecular density (P = 0.045, 0.041, 0.048 and 0.035, respectively). aBMD increased to a similar extent with strontium ranelate and alendronate at the spine (5.7% versus 5.1%, respectively) and total hip (3.3% versus 2.2%, respectively). No significant changes were observed in remodeling markers with strontium ranelate, while suppression was observed with alendronate. Within the methodological constraints of HR-pQCT through its possible sensitivity to X-ray attenuation of different minerals, strontium ranelate had greater effects than alendronate on distal tibia cortical thickness and trabecular volumetric density

    Unforgettable film music: The role of emotion in episodic long-term memory for music

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Specific pieces of music can elicit strong emotions in listeners and, possibly in connection with these emotions, can be remembered even years later. However, episodic memory for emotional music compared with less emotional music has not yet been examined. We investigated whether emotional music is remembered better than less emotional music. Also, we examined the influence of musical structure on memory performance.</p> <p>Results</p> <p>Recognition of 40 musical excerpts was investigated as a function of arousal, valence, and emotional intensity ratings of the music. In the first session the participants judged valence and arousal of the musical pieces. One week later, participants listened to the 40 old and 40 new musical excerpts randomly interspersed and were asked to make an old/new decision as well as to indicate arousal and valence of the pieces. Musical pieces that were rated as very positive were recognized significantly better.</p> <p>Conclusion</p> <p>Musical excerpts rated as very positive are remembered better. Valence seems to be an important modulator of episodic long-term memory for music. Evidently, strong emotions related to the musical experience facilitate memory formation and retrieval.</p

    A practical guide to the simultaneous determination of protein structure and dynamics using metainference

    Full text link
    Accurate protein structural ensembles can be determined with metainference, a Bayesian inference method that integrates experimental information with prior knowledge of the system and deals with all sources of uncertainty and errors as well as with system heterogeneity. Furthermore, metainference can be implemented using the metadynamics approach, which enables the computational study of complex biological systems requiring extensive conformational sampling. In this chapter, we provide a step-by-step guide to perform and analyse metadynamic metainference simulations using the ISDB module of the open-source PLUMED library, as well as a series of practical tips to avoid common mistakes. Specifically, we will guide the reader in the process of learning how to model the structural ensemble of a small disordered peptide by combining state-of-the-art molecular mechanics force fields with nuclear magnetic resonance data, including chemical shifts, scalar couplings and residual dipolar couplings.Comment: 49 pages, 9 figure

    Reduced Cortisol and Metabolic Responses of Thin Ewes to an Acute Cold Challenge in Mid-Pregnancy: Implications for Animal Physiology and Welfare

    Get PDF
    Background: Low food availability leading to reductions in Body Condition Score (BCS; 0 indicates emaciation and 5 obesity) in sheep often coincides with low temperatures associated with the onset of winter in New Zealand. The ability to adapt to reductions in environmental temperature may be impaired in animals with low BCS, in particular during pregnancy when metabolic demand is higher. Here we assess whether BCS affects a pregnant animal’s ability to cope with cold challenges. Methods: Eighteen pregnant ewes with a BCS of 2.760.1 were fed to attain low (LBC: BCS2.360.1), medium (MBC: BCS3.260.2) or high BCS (HBC: BCS3.660.2). Shorn ewes were exposed to a 6-h acute cold challenge in a climate-controlled room (wet and windy conditions, 4.460.1uC) in mid-pregnancy. Blood samples were collected during the BCS change phase, acute cold challenge and recovery phase. Results: During the BCS change phase, plasma glucose and leptin concentrations declined while free fatty acids (FFA) increased in LBC compared to MBC (P,0.01, P,0.01 and P,0.05, respectively) and HBC ewes (P,0.05, P,0.01 and P,0.01, respectively). During the cold challenge, plasma cortisol concentrations were lower in LBC than MBC (P,0.05) and HBC ewes (P,0.05), and FFA and insulin concentrations were lower in LBC than HBC ewes (P,0.05 and P,0.001, respectively). Leptin concentrations declined in MBC and HBC ewes while remaining unchanged in LBC ewes (P,0.01). Glucose concentrations and internal body temperature (Tcore) increased in all treatments, although peak Tcore tended to be higher in HBC ewes (P,0.1). During the recovery phase, T4 concentrations were lower in LBC ewes (P,0.05). Conclusion: Even though all ewes were able to increase Tcore and mobilize glucose, low BCS animals had considerably reduced cortisol and metabolic responses to a cold challenge in mid-pregnancy, suggesting that their ability to adapt to cold challenges through some of the expected pathways was reduced

    Adult-Onset Obesity Reveals Prenatal Programming of Glucose-Insulin Sensitivity in Male Sheep Nutrient Restricted during Late Gestation

    Get PDF
    BACKGROUND: Obesity invokes a range of metabolic disturbances, but the transition from a poor to excessive nutritional environment may exacerbate adult metabolic dysfunction. The current study investigated global maternal nutrient restriction during early or late gestation on glucose tolerance and insulin sensitivity in the adult offspring when lean and obese. METHODS/PRINCIPAL FINDINGS: Pregnant sheep received adequate (1.0M; CE, n = 6) or energy restricted (0.7M) diet during early (1-65 days; LEE, n = 6) or late (65-128 days; LEL, n = 7) gestation (term approximately 147 days). Subsequent offspring remained on pasture until 1.5 years when all received glucose and insulin tolerance tests (GTT & ITT) and body composition determination by dual energy x-ray absorptiometry (DXA). All animals were then exposed to an obesogenic environment for 6-7 months and all protocols repeated. Prenatal dietary treatment had no effect on birth weight or on metabolic endpoints when animals were 'lean' (1.5 years). Obesity revealed generalised metabolic 'inflexibility' and insulin resistance; characterised by blunted excursions of plasma NEFA and increased insulin(AUC) (from 133 to 341 [s.e.d. 26] ng.ml(-1).120 mins) during a GTT, respectively. For LEL vs. CE, the peak in plasma insulin when obese was greater (7.8 vs. 4.7 [s.e.d. 1.1] ng.ml(-1)) and was exacerbated by offspring sex (i.e. 9.8 vs. 4.4 [s.e.d. 1.16] ng.ml(-1); LEL male vs. CE male, respectively). Acquisition of obesity also significantly influenced the plasma lipid and protein profile to suggest, overall, greater net lipogenesis and reduced protein metabolism. CONCLUSIONS: This study indicates generalised metabolic dysfunction with adult-onset obesity which also exacerbates and 'reveals' programming of glucose-insulin sensitivity in male offspring prenatally exposed to maternal undernutrition during late gestation. Taken together, the data suggest that metabolic function appears little compromised in young prenatally 'programmed' animals so long as weight is adequately controlled. Nutritional excess in adulthood exacerbates any programmed phenotype, indicating greater vigilance over weight control is required for those individuals exposed to nutritional thrift during gestation
    corecore