183 research outputs found

    Commentary on strategies for switching antipsychotics

    Get PDF
    Both the new generation of antipsychotics and the more traditional antipsychotic drugs produce an important and meaningful improvement in patients with schizophrenia, but most patients are neither cured nor free of symptoms. As a consequence, it is common to switch from one drug to another in the hope of obtaining a better response. All antipsychotic drugs produce some side effects, so switching can also be a tolerance issue. There are reports in the literature on the tactics of switching: abrupt discontinuation, cross tapering, starting a patient on a new drug while continuing with the old drug until the new drug has reached a steady state, or some variation on these tactics. In this issue, Ganguli et al. have carried out a randomized switching study, the data from which indicates the tactics that might be optimal. We put this paper into context, provide a critique and describe indications for switching

    D2 receptor occupancy of olanzapine pamoate depot using positron emission tomography : an open-label study in patients with schizophrenia

    Get PDF
    A long-acting depot formulation of olanzapine that sustains plasma olanzapine concentrations for over a month after a single injection is currently under development. This multicenter, open-label study explored D2 receptor occupancy of a fixed dose of olanzapine pamoate (OP) depot given every 4 weeks. Patients (nine male, five female) with schizophrenia or schizoaffective disorder previously stabilized on oral olanzapine were switched to OP depot 300 mg by intramuscular injection every 4 weeks for 6 months. No visitwise within-group significant changes were found in Brief Psychiatric Rating Scale Total or Clinical Global Impressions-Severity of Illness scores, although seven patients received oral olanzapine supplementation during the first four injection cycles. To minimize impact on D2 occupancy, positron emission tomography (PET) scans were not completed during injection cycles that required supplemental oral olanzapine. Two patients reported transient injection site adverse events, which did not result in discontinuation. The most frequently reported treatment-emergent adverse events were insomnia, aggravated psychosis, and anxiety. Mean striatal D2 receptor occupancy, as measured by [11C]-raclopride PET, was 69% on oral olanzapine (5–20 mg/day) and 50% (trough) on OP depot at steady state. Following an initial decline, occupancy returned to 84% of baseline oral olanzapine occupancy after six injections. Over the study period, D2 receptor occupancy and plasma olanzapine concentrations were significantly correlated (r=0.76, Pless than or equal to0.001). OP depot resulted in mean D2 receptor occupancy of approximately 60% or higher at the end of the 6-month study period, a level consistent with antipsychotic efficacy and found during treatment with oral olanzapine. However, supplemental oral olanzapine or another dosing strategy may be necessary to maintain adequate therapeutic response during the first few injection cycles.peer-reviewe

    A systematic review of methods for increasing vegetable consumption in early childhood

    Get PDF
    PURPOSE OF REVIEW: This study aims to synthesise the body of research investigating methods for increasing vegetable consumption in 2- to 5-year-old children, while offering advice for practitioners. RECENT FINDINGS: Repeated exposure is a well-supported method for increasing vegetable consumption in early childhood and may be enhanced with the inclusion of non-food rewards to incentivise tasting. Peer models appear particularly effective for increasing 2-5-year-olds' vegetable consumption. There is little evidence for the effectiveness of food adaptations (e.g. flavour-nutrient learning) for increasing general vegetable intake among this age group, although they show some promise with bitter vegetables. SUMMARY: This review suggests that practitioners may want to focus their advice to parents around strategies such as repeated exposure, as well as the potential benefits of modelling and incentivising tasting with non-food rewards. Intervention duration varies greatly, and considerations need to be made for how this impacts on success

    A state-of-the-art review of curve squeal noise: Phenomena, mechanisms, modelling and mitigation

    Full text link
    [EN] Curve squeal is an intense tonal noise occurring when a rail vehicle negotiates a sharp curve. The phenomenon can be considered to be chaotic, with a widely differing likelihood of occurrence on different days or even times of day. The term curve squeal may include several different phenomena with a wide range of dominant frequencies and potentially different excitation mechanisms. This review addresses the different squeal phenomena and the approaches used to model squeal noise; both time-domain and frequency-domain approaches are discussed and compared. Supporting measurements using test rigs and field tests are also summarised. A particular aspect that is addressed is the excitation mechanism. Two mechanisms have mainly been considered in previous publications. In many early papers the squeal was supposed to be generated by the so-called falling friction characteristic in which the friction coefficient reduces with increasing sliding velocity. More recently the mode coupling mechanism has been raised as an alternative. These two mechanisms are explained and compared and the evidence for each is discussed. Finally, a short review is given of mitigation measures and some suggestions are offered for why these are not always successful.Squicciarini, G.; Thompson, D.; Ding, B.; Baeza González, LM. (2018). A state-of-the-art review of curve squeal noise: Phenomena, mechanisms, modelling and mitigation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design. 139:3-41. https://doi.org/10.1007/978-3-319-73411-8_1S341139Anderson, D., Wheatley, N., Fogarty, B., Jiang, J., Howie, A., Potter, W.: Mitigation of curve squeal noise in Queensland, New South Wales and South Australia. In: Conference on Railway Engineering. pp. 625–636, Perth, Australia (2008)Hanson, D., Jiang, J., Dowdell, B., Dwight, R.: Curve squeal: causes, treatments and results. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings, vol. 249, pp. 6316–6323. Melbourne, Australia (2014)Rudd, M.J.: Wheel/rail noise—part II: wheel squeal. J. Sound Vib. 46(3), 381–394 (1976)Remington, P.J.: Wheel/rail squeal and impact noise: what do we know? What don’t we know? Where do we go from here? J. Sound Vib. 116(2), 339–353 (1987)Remington, P.J.: Wheel/rail rolling noise: what do we know? What don’t we know? Where do we go from here? J. Sound Vib. 120(2), 203–226 (1988)Wickens, A.H.: Fundamentals of Rail Vehicle Dynamics, Guidance and Stability. Swets & Zeitlinger, Lisse (2003)Thompson, D.J.: Railway Noise and Vibration: Mechanisms, Modelling and Mitigation. Elsevier, Oxford (2009)Kalker, J.J.: Three Dimensional Elastic Bodies in Rolling Contact. Kluwer academic publishers, Dordrecht (1990)Vermeulen, P.J., Johnson, K.L.: Contact of nonspherical elastic bodies transmitting tangential forces. J. Appl. Mech. 31(2), 338–340 (1964)Shen, Z.Y., Hedrick, J.K., Elkins, J.A.: A comparison of alternative creep-force models for rail vehicle dynamic analysis. In: Proceedings of 8th IAVSD Symposium, Cambridge MA, Swets and Zeitlinger, Lisse, pp. 591–605 (1983)Huang, Z.Y.: Theoretical Modelling of Railway Curve Squeal. Ph.D. thesis, University of Southampton, UK (2007)Hoffmann, N., Fischer, M., Allgaier, R., Gaul, L.: A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations. Mech. Res. Commun. 29(4), 197–205 (2002)Hoffmann, N., Gaul, L.: Effects of damping on mode-coupling instability in friction induced oscillations. J. Appl. Math. Mech. 83(8), 524–534 (2003)Sinou, J.J., Jezequel, L.: Mode coupling instability in friction-induced vibrations and its dependency on system parameters including damping. Eur. J. Mech.-A/Solids 26(1), 106–122 (2007)Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P.: Automotive disc brake squeal. J. Sound Vib. 267(1), 105–166 (2003)Ghazaly, N.M., El-Sharkawy, M., Ahmed, I.: A review of automotive brake squeal mechanisms. J. Mech. Des. Vibr. 1(1), 5–9 (2013)Ouyang, H., Nack, W., Yuan, Y., Chen, F.: Numerical analysis of automotive disc brake squeal: a review. Int. J. Veh. Noise Vib. 1(3–4), 207–231 (2005)Dorf, R.C., Bishop, R.H.: Modern Control Systems, 11th edn. Prentice Hall. (2008)De Beer, F.G., Janssens, M.H.A., Kooijman, P.P., van Vliet, W.J.: Curve squeal of railbound vehicles (part 1): frequency domain calculation model. In: Proceedings of Internoise, vol. 3, pp. 1560–1563. Nice, France (2000)Von Stappenbeck, H.: Das Kurvengeräusch der Straßenbahn. Möglichkeiten zu seiner Unterdrückung. Z. VDI 96(6), 171–175 (1954)Van Ruiten, C.J.M.: Mechanism of squeal noise generated by trams. J. Sound Vib. 120(2), 245–253 (1988)Nakai, M., Chiba, Y., Yokoi, M.: Railway wheel squeal: 1st report, on frequency of squeal. Bull. Jpn. Soc. Mech. Eng. 25, 1127–1134 (1982)Nakai, M., Chiba, Y., Yokoi, M.: Railway wheel squeal: 2nd report, mechanism of specific squeal frequency. Bull. Jpn. Soc. Mech. Eng. 27, 301–308 (1984)Nakai, M., Chiba, Y., Yokoi, M.: Railway wheel squeal: 3rd report, squeal of a disk simulating a wheel in internal resonances. Bull. Jpn. Soc. Mech. Eng. 28, 500–507 (1985)Schneider, E., Popp, K., Irretier, H.: Noise generation in railway wheels due to rail-wheel contact forces. J. Sound Vib. 120(2), 227–244 (1988)Kraft, K.: Der Einfluß der Fahrgeschwindigkeit auf den Haftwert zwischen Rad und Schiene. Arch. für Eisenbahntechnik 22, 58–78 (1967)Fingberg, U.: A model of wheel-rail squealing noise. J. Sound Vib. 143(3), 365–377 (1990)Périard, F.: Wheel-Rail Noise Generation: Curve Squealing by Trams. Ph.D. thesis, Technische Universiteit Delft (1998)Heckl, M.A., Abrahams, I.D.: Curve squeal of train wheels, part 1: mathematical model for its generation. J. Sound Vib. 229(3), 669–693 (2000)Heckl, M.A.: Curve squeal of train wheels, part 2: which wheel modes are prone to squeal? J. Sound Vib. 229(3), 695–707 (2000)Heckl, M.A.: Curve squeal of train wheels: unstable modes and limit cycles. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 458, 1949–1965 (2002)Liu, X., Meehan, P.A.: Wheel squeal noise: a simplified model to simulate the effect of rolling speed and angle of attack. J. Sound Vib. 338, 184–198 (2015)Meehan, P.A., Liu, X.: Analytical prediction and investigation of wheel squeal amplitude. In: Anderson, D., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 139, pp 69–80. Springer, Heidelberg (2018)Kooijman, P.P., Van Vliet, W.J., Janssens, M.H.A., De Beer, F.G.: Curve squeal of railbound vehicles (part 2): set-up for measurement of creepage dependent friction coefficient. In: Proceedings of Internoise, vol. 3, pp. 1564–1567. Nice, France (2000)De Beer, F.G., Janssens, M.H.A., Kooijman, P.P.: Squeal noise of rail-bound vehicles influenced by lateral contact position. J. Sound Vib. 267(3), 497–507 (2003)Thompson, D.J., Hemsworth, B., Vincent, N.: Experimental validation of the TWINS prediction program for rolling noise, part 1: description of the model and method. J. Sound Vib. 193(1), 123–135 (1996)Monk-Steel, A., Thompson, D.J.: Models for railway curve squeal noise. In: VIII International Conference on Recent Advances in Structural Dynamics, Southampton, UK (2003)Barman, J.F., Katzenelson, J.: A generalized Nyquist-type stability criterion for multivariable feedback systems. Int. J. Control 20(4), 593–622 (1974)Huang, Z.Y., Thompson, D.J., Jones, C.J.C.: Squeal prediction for a bogied vehicle in a curve. In Schulte-Werning, B., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM vol. 99, pp. 313–319. Springer, Heidelberg (2008)Hsu, S.S., Huang, Z., Iwnicki, S.D., Thompson, D.J., Jones, C.J., Xie, G., Allen, P.D.: Experimental and theoretical investigation of railway wheel squeal. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 221(1), 59–73 (2007)Squicciarini, G., Usberti, S., Thompson, D.J., Corradi, R., Barbera, A.: Curve squeal in the presence of two wheel/rail contact points. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 603–610. Springer, Heidelberg (2015)Xie, G., Allen, P.D., Iwnicki, S.D., Alonso, A., Thompson, D.J., Jones, C.J., Huang, Z.Y.: Introduction of falling friction coefficients into curving calculations for studying curve squeal noise. Veh. Syst. Dyn. 44(sup1), 261–271 (2006)Giménez, J.G., Alonso, A., Gómez, E.: Introduction of a friction coefficient dependent on the slip in the FastSim algorithm. Veh. Syst. Dyn. 43(4), 233–244 (2005)Chiello, O., Ayasse, J.B., Vincent, N., Koch, J.R.: Curve squeal of urban rolling stock—part 3: theoretical model. J. Sound Vib. 293(3), 710–727 (2006)Collette, C.: Importance of the wheel vertical dynamics in the squeal noise mechanism on a scaled test bench. Shock Vibr. 19(2), 145–153 (2012)Brunel, J.F., Dufrénoy, P., Naït, M., Muñoz, J.L., Demilly, F.: Transient models for curve squeal noise. J. Sound Vib. 293(3), 758–765 (2006)Glocker, C., Cataldi-Spinola, E., Leine, R.I.: Curve squealing of trains: measurement, modelling and simulation. J. Sound Vib. 324(1), 365–386 (2009)Pieringer, A.: A numerical investigation of curve squeal in the case of constant wheel/rail friction. J. Sound Vib. 333(18), 4295–4313 (2014)Pieringer, A., Kropp, W.: A time-domain model for coupled vertical and tangential wheel/rail interaction—a contribution to the modelling of curve squeal. In: Maeda, T., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 221–229. Springer, Heidelberg (2012)Pieringer, A., Baeza, L., Kropp. W.: Modelling of railway curve squeal including effects of wheel rotation. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 417–424. Springer, Heidelberg (2015)Zenzerovic, I., Pieringer, A., Kropp. W.: Towards an engineering model for curve squeal. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 433–440. Springer, Heidelberg (2015)Zenzerovic, I., Kropp, W., Pieringer, A.: An engineering time-domain model for curve squeal: tangential point-contact model and Green’s functions approach. J. Sound Vib. 376, 149–165 (2016)Pieringer, A., Torstensson, P.T., Giner, J., Baeza, L.: Investigation of railway curve squeal using a combination of frequency- and time-domain models. In: Anderson, D., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 139, pp 81–93. Springer, Heidelberg (2018)Chen, G.X., Xiao, J.B., Liu, Q.Y., Zhou. Z.R.: Complex eigenvalue analysis of railway curve squeal. In: Schulte-Werning, B., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 99, pp. 433–439. Springer, Heidelberg (2008)Fourie, D.J., Gräbe, P.J., Heyns, P.S., Fröhling, R.D.: Analysis of wheel squeal due to unsteady longitudinal creepage using the complex eigenvalue method. In: Anderson, D., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 139, pp 55–67. Springer, Heidelberg (2018)Wang, C., Dwight, R., Li, W., Jiang, J.: Prediction on curve squeal in the case of constant wheel rail friction coefficient. In: Anderson, D., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 139, pp XXX–XXX. Springer, Heidelberg (2018)Ding, B., Squicciarini, G., Thompson, D.J.: Effects of rail dynamics and friction characteristics on curve squeal. In: XIII International Conference on Motion and Vibration Control and XII International Conference on Recent Advances in Structural Dynamics (MoViC/RASD), Southampton (2016)Bleedorn, T.G., Johnstone. B.: Steerable steel wheel systems and wheel noise suppression. In: Conference Rec IAS 12th Annual Meeting, Los Angeles, California (1977)Koch, J.R., Vincent, N., Chollet, H., Chiello, O.: Curve squeal of urban rolling stock—part 2: parametric study on a 1/4 scale test rig. J. Sound Vib. 293(3), 701–709 (2006)Logston, C.F., Itami, G.S.: Locomotive friction-creep studies. ASME J. Eng. Ind. 102(3), 275–281 (1980)Ertz, M.: Creep force laws for wheel/rail contact with temperature-dependent coefficient of friction. In: 8th Mini Conference on Vehicle System Dynamics, Identification and Anomalies, Budapest (2002)Lang, W., Roth, R.: Optimale Kraftschlussausnutzung bei Hochleistungs-Schienenfahrzeugen. Eisenbahntechnische Rundsch. 42, 61–66 (1993)Polach, O.: Creep forces in simulations of traction vehicles running on adhesion limit. Wear 258(7), 992–1000 (2005)Zhang, W., Chen, J., Wu, X., Jin, X.: Wheel/rail adhesion and analysis by using full scale roller rig. Wear 253(1), 82–88 (2002)Harrison, H., McCanney, T., Cotter, J.: Recent developments in coefficient of friction measurements at the rail/wheel interface. Wear 253(1), 114–123 (2002)Gallardo-Hernandez, E.A., Lewis, R.: Twin disc assessment of wheel/rail adhesion. Wear 265(9), 1309–1316 (2008)Fletcher, D.I., Lewis, S.: Creep curve measurement to support wear and adhesion modelling, using a continuously variable creep twin disc machine. Wear 298–299, 57–65 (2013)Fletcher, D.I.: A new two-dimensional model of rolling–sliding contact creep curves for a range of lubrication types. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 227(6), 529–537 (2013)Matsumoto, A., Sato, Y., Ono, H., Wang, Y., Yamamoto, M., Tanimoto, M., Oka, Y.: Creep force characteristics between rail and wheel on scaled model. Wear 253(1), 199–203 (2002)Janssens, M.H.A., van Vliet, W.J., Kooijman, P.P., De Beer, F.G.: Curve squeal of railbound vehicles (part 3): measurement method and results. In: Proceedings of Internoise, vol. 3, pp. 1568–1571, Nice, France (2000)Monk-Steel, A.D., Thompson, D.J., De Beer, F.G., Janssens, M.H.A.: An investigation into the influence of longitudinal creepage on railway squeal noise due to lateral creepage. J. Sound Vib. 293(3), 766–776 (2006)Liu, X., Meehan, P.A.: Investigation of the effect of lateral adhesion and rolling speed on wheel squeal noise. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 227(5), 469–480 (2013)Liu, X., Meehan, P.A.: Investigation of the effect of relative humidity on lateral force in rolling contact and curve squeal. Wear 310(1), 12–19 (2014)Liu, X., Meehan, P.A.: Investigation of squeal noise under positive friction characteristics condition provided by friction modifiers. J. Sound Vib. 371, 393–405 (2016)Jie, E., Kim, J.Y., Hwang, D.H., Lee, J.H., Kim, K.J., Kim, J.C.: An experimental study of squeal noise characteristics for railways using a scale model test rig. In: J. Pombo (ed.) Proceedings of the Third International Conference on Railway Technology: Research, Development and Maintenance, Cagliari, Sardinia, Italy (2016)Eadie, D.T., Santoro, M., Kalousek, J.: Railway noise and the effect of top of rail liquid friction modifiers: changes in sound and vibration spectral distributions in curves. Wear 258(7), 1148–1155 (2005)Bullen, R., Jiang, J.: Algorithms for detection of rail wheel squeal. In: 20th International Congress on Acoustics 2010, ICA 2010—Incorporating Proceedings of the 2010 Annual Conference of the Australian Acoustical Society. pp. 2212–2216 (2010)Stefanelli, R., Dual, J., Cataldi-Spinola, E.: Acoustic modelling of railway wheels and acoustic measurements to determine involved eigenmodes in the curve squealing phenomenon. Veh. Syst. Dyn. 44(sup1), 286–295 (2006)Vincent, N., Koch, J.R., Chollet, H., Guerder, J.Y.: Curve squeal of urban rolling stock—part 1: state of the art and field measurements. J. Sound Vib. 293(3), 691–700 (2006)Anderson, D., Wheatley, N.: Mitigation of wheel squeal and flanging noise on the Australian network. In: Schulte-Werning, B., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 99, pp. 399–405. Springer, Heidelberg (2008)Curley, D., Anderson, D.C., Jiang, J., Hanson, D.: Field trials of gauge face lubrication and top-of-rail friction modification for curve noise mitigation. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 449–456. Springer, Heidelberg (2015)Jiang, J., Hanson, D., Dowdell, B.: Wheel squeal—insights from wayside condition monitoring measurements and field trials. In: Anderson, D., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 139, pp 41–53. Springer, Heidelberg (2018)Jiang, J., Dwight, R., Anderson, D.: Field verification of curving noise mechanisms. In: Maeda, T., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 349–356. Springer, Heidelberg (2012)Jiang, J., Anderson, D.C., Dwight, R.: The mechanisms of curve squeal. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 587–594. Springer, Heidelberg (2015)Fourie, D.J., Gräbe, P.J., Heyns, P.S., Fröhling, R.D.: Experimental characterisation of railway wheel squeal occurring in large-radius curves. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 230(6), 1561–1574 (2016)Corradi, R., Crosio, P., Manzoni, S., Squicciarini, G.: Experimental investigation on squeal noise in tramway sharp curves. In: Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven (2011)Merideno, I., Nieto, J., Gil-Negrete, N., Landaberea, A., Iartza, J.: Constrained layer damper modelling and performance evaluation for eliminating squeal noise in trams. Shock and Vibration (2014)Nelson J.T.: Wheel/rail noise control manual, TCRP Report 23 (1997)Krüger, F.: Schall- und Erschütterungsschutz im Schienenverkehr. Expert Verlag, Renningen (2001)Elbers, F., Verheijen, E.: Railway noise technical measures catalogue, UIC report UIC003-01-04fe (2013)Oertli, J.: Combatting curve squeal, phase II, final report, UIC (2005)Eadie, D.T., Santoro, M., Powell, W.: Local control of noise and vibration with KELTRACK™ friction modifier and protector® trackside application: an integrated solution. J. Sound Vib. 267(3), 761–772 (2003)Eadie, D.T., Santoro, M.: Top-of-rail friction control for curve noise mitigation and corrugation rate reduction. J. Sound Vib. 293(3), 747–757 (2006)Suda, Y., Iwasa, T., Komine, H., Tomeoka, M., Nakazawa, H., Matsumoto, K., Nakai, T., Tanimoto, M., Kishimoto, Y.: Development of onboard friction control. Wear 258(7), 1109–1114 (2005)Bühler, S., Thallemer, B.: How to avoid squeal noise on railways: state of the art and practical experience. In: Schulte-Werning, B., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 99, pp. 406–411. Springer, Heidelberg (2008)Jones, C.J.C., Thompson, D.J.: Rolling noise generated by railway wheels with visco-elastic layers. J. Sound Vib. 231(3), 779–790 (2000)Wetta, P., Demilly, F.: Reduction of wheel squeal noise generated on curves or during braking. In 11th International of Wheelset Congress, Paris (1995)Brunel, J.F., Dufrénoy, P., Demilly, F.: Modelling of squeal noise attenuation of ring damped wheels. Appl. Acoust. 65(5), 457–471 (2004)Marjani, S.R., Younesian, D.: Suppression of train wheel squeal noise by shunted piezoelectric elements. Int. J. Struct. Stab. Dyn. (2016)Heckl, M.A., Huang, X.Y.: Curve squeal of train wheels, part 3: active control. J. Sound Vib. 229(3), 709–735 (2000)Thompson, D.J., Jones, C.J.C., Waters, T.P., Farrington, D.: A tuned damping device for reducing noise from railway track. Appl. Acoust. 68(1), 43–57 (2007)Jiang, J., Ying, I., Hanson, D., Anderson, D.C.: An investigation of the influence of track dynamics on curve noise. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 441–448. Springer, Heidelberg (2015)Toward, M., Squicciarini, G., Thompson, D.J.: Reducing freight wagon noise at source. Int. Railway J. March, 47–49 (2015)Illingworth, R., Pollard, M.G.: The use of steering axle suspensions to reduce wheel and rail wear in curves. Proc. Inst. Mech. Eng. 196(1), 379–385 (1982)Garcia, J.F., Olaizola, X., Martin, L.M., Gimenez, J.G.: Theoretical comparison between different configurations of radial and conventional bogies. Veh. Syst. Dyn. 33(4), 233–259 (2000)Bruni, S., Goodall, R., Mei, T.X., Tsunashima, H.: Control and monitoring for railway vehicle dynamics. Veh. Syst. Dyn. 45(7–8), 743–779 (2007)Hiensch, M., Larsson, P.O., Nilsson, O., Levy, D., Kapoor, A., Franklin, F., Nielsen, J., Ringsberg, J., Josefson, L.: Two-material rail development: field test results regarding rolling contact fatigue and squeal noise behaviour. Wear 258(7), 964–972 (2005)Kopp, E.: Fünf Jahre Erfahrungen mit asymmetrisch geschliffenen Schienenprofilen. Eisenbahn Techn. Rundsch. 40, 665 (1991

    Threat captures attention, but not automatically: Top-down goals modulate attentional orienting to threat distractors

    Get PDF
    The rapid orienting of attention to potential threats has been proposed to proceed outside of top-down control. However, paradigms that have been used to investigate this have struggled to separate the rapid orienting of attention (i.e. capture) from the later disengagement of focal attention that may be subject to top-down control. Consequently, it remains unclear whether and to what extent orienting to threat is contingent on top-down goals. The current study manipulated the goal-relevance of threat distractors (spiders), whilst a strict top-down attentional set was encouraged by presenting the saliently colored target and the threat distracter simultaneously for a limited time. The goal-relevance of threatening distractors was manipulated by including a spider amongst the possible target stimuli (Experiment 1: spider/cat targets) or excluding it (Experiment 2: bird/fish targets). Orienting and disengagement were disentangled by cueing attention away from or towards the threat prior to its onset. The results indicated that the threatening spider distractors elicited rapid orienting of attention when spiders were potentially goal-relevant (Experiment 1) but did so much less when they were irrelevant to the task goal (Experiment 2). Delayed disengagement from the threat distractors was even more strongly contingent on the task goal and occurred only when a spider was a possible target. These results highlight the role of top-down goals in attentional orienting to and disengagement from threat. © 2016 The Psychonomic Society, Inc

    Comparative SNP and Haplotype Analysis Reveals a Higher Genetic Diversity and Rapider LD Decay in Tropical than Temperate Germplasm in Maize

    Get PDF
    Understanding of genetic diversity and linkage disequilibrium (LD) decay in diverse maize germplasm is fundamentally important for maize improvement. A total of 287 tropical and 160 temperate inbred lines were genotyped with 1943 single nucleotide polymorphism (SNP) markers of high quality and compared for genetic diversity and LD decay using the SNPs and their haplotypes developed from genic and intergenic regions. Intronic SNPs revealed a substantial higher variation than exonic SNPs. The big window size haplotypes (3-SNP slide-window covering 2160 kb on average) revealed much higher genetic diversity than the 10 kb-window and gene-window haplotypes. The polymorphic information content values revealed by the haplotypes (0.436–0.566) were generally much higher than individual SNPs (0.247–0.259). Cluster analysis classified the 447 maize lines into two major groups, corresponding to temperate and tropical types. The level of genetic diversity and subpopulation structure were associated with the germplasm origin and post-domestication selection. Compared to temperate lines, the tropical lines had a much higher level of genetic diversity with no significant subpopulation structure identified. Significant variation in LD decay distance (2–100 kb) was found across the genome, chromosomal regions and germplasm groups. The average of LD decay distance (10–100 kb) in the temperate germplasm was two to ten times larger than that in the tropical germplasm (5–10 kb). In conclusion, tropical maize not only host high genetic diversity that can be exploited for future plant breeding, but also show rapid LD decay that provides more opportunity for selection

    Epileptogenic potential of mefloquine chemoprophylaxis: a pathogenic hypothesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mefloquine has historically been considered safe and well-tolerated for long-term malaria chemoprophylaxis, but prescribing it requires careful attention in order to rule out contraindications to its use. Contraindications include a history of certain neurological conditions that might increase the risk of seizure and other adverse events. The precise pathophysiological mechanism by which mefloquine might predispose those with such a history to seizure remains unclear.</p> <p>Presentation of the hypothesis</p> <p>Studies have demonstrated that mefloquine at doses consistent with chemoprophylaxis accumulates at high levels in brain tissue, which results in altered neuronal calcium homeostasis, altered gap-junction functioning, and contributes to neuronal cell death. This paper reviews the scientific evidence associating mefloquine with alterations in neuronal function, and it suggests the novel hypothesis that among those with the prevalent EPM1 mutation, inherited and mefloquine-induced impairments in neuronal physiologic safeguards might increase risk of GABAergic seizure during mefloquine chemoprophylaxis.</p> <p>Testing and implications of the hypothesis</p> <p>Consistent with case reports of tonic-clonic seizures occurring during mefloquine chemoprophylaxis among those with family histories of epilepsy, it is proposed here that a new contraindication to mefloquine use be recognized for people with EPM1 mutation and for those with a personal history of myoclonus or ataxia, or a family history of degenerative neurologic disorder consistent with EPM1. Recommendations and directions for future research are presented.</p

    Genetic Diversity and Linkage Disequilibrium in Chinese Bread Wheat (Triticum aestivum L.) Revealed by SSR Markers

    Get PDF
    Two hundred and fifty bread wheat lines, mainly Chinese mini core accessions, were assayed for polymorphism and linkage disequilibrium (LD) based on 512 whole-genome microsatellite loci representing a mean marker density of 5.1 cM. A total of 6,724 alleles ranging from 1 to 49 per locus were identified in all collections. The mean PIC value was 0.650, ranging from 0 to 0.965. Population structure and principal coordinate analysis revealed that landraces and modern varieties were two relatively independent genetic sub-groups. Landraces had a higher allelic diversity than modern varieties with respect to both genomes and chromosomes in terms of total number of alleles and allelic richness. 3,833 (57.0%) and 2,788 (41.5%) rare alleles with frequencies of <5% were found in the landrace and modern variety gene pools, respectively, indicating greater numbers of rare variants, or likely new alleles, in landraces. Analysis of molecular variance (AMOVA) showed that A genome had the largest genetic differentiation and D genome the lowest. In contrast to genetic diversity, modern varieties displayed a wider average LD decay across the whole genome for locus pairs with r2>0.05 (P<0.001) than the landraces. Mean LD decay distance for the landraces at the whole genome level was <5 cM, while a higher LD decay distance of 5–10 cM in modern varieties. LD decay distances were also somewhat different for each of the 21 chromosomes, being higher for most of the chromosomes in modern varieties (<5∼25 cM) compared to landraces (<5∼15 cM), presumably indicating the influences of domestication and breeding. This study facilitates predicting the marker density required to effectively associate genotypes with traits in Chinese wheat genetic resources
    • …
    corecore