15 research outputs found

    Rapid movement and transcriptional re-localization of human cohesin on DNA

    Get PDF
    The spatial organization, correct expression, repair, and segregation of eukaryotic genomes depend on cohesin, ring-shaped protein complexes that are thought to function by entrapping DNA It has been proposed that cohesin is recruited to specific genomic locations from distal loading sites by an unknown mechanism, which depends on transcription, and it has been speculated that cohesin movements along DNA could create three-dimensional genomic organization by loop extrusion. However, whether cohesin can translocate along DNA is unknown. Here, we used single-molecule imaging to show that cohesin can diffuse rapidly on DNA in a manner consistent with topological entrapment and can pass over some DNA-bound proteins and nucleosomes but is constrained in its movement by transcription and DNA-bound CCCTC-binding factor (CTCF). These results indicate that cohesin can be positioned in the genome by moving along DNA, that transcription can provide directionality to these movements, that CTCF functions as a boundary element for moving cohesin, and they are consistent with the hypothesis that cohesin spatially organizes the genome via loop extrusion

    Estimation of microtubule-generated forces using a DNA origami nanospring.

    No full text
    Microtubules are dynamic cytoskeletal filaments that can generate forces when polymerizing and depolymerizing. Proteins that follow growing or shortening microtubule ends and couple forces to cargo movement are important for a wide range of cellular processes. Quantifying these forces and the composition of protein complexes at dynamic microtubule ends is challenging and requires sophisticated instrumentation. Here, we present an experimental approach to estimate microtubule-generated forces through the extension of a fluorescent spring-shaped DNA origami molecule. Optical readout of the spring extension enables recording of force production simultaneously with single-molecule fluorescence of proteins getting recruited to the site of force generation. DNA nanosprings enable multiplexing of force measurements and only require a fluorescence microscope and basic laboratory equipment. We validate the performance of DNA nanosprings against results obtained using optical trapping. Finally, we demonstrate the use of the nanospring to study proteins that couple microtubule growth and shortening to force generation

    Aortic valve prosthesis-patient mismatch and exercise capacity in adult patients with congenital heart disease

    No full text
    To report the prevalence of aortic valve prosthesis-patient mismatch (PPM) in an adult population with congenital heart disease (CHD) and its impact on exercise capacity. Adults with congenital heart disease (ACHD) with a history of aortic valve replacement may outgrow their prosthesis later in life. However, the prevalence and clinical consequences of aortic PPM in ACHD are presently unknown. From the national Dutch Congenital Corvitia (CONCOR) registry, we identified 207 ACHD with an aortic valve prosthesis for this cross-sectional cohort study. Severe PPM was defined as an indexed effective orifice area ≤0.65 cm2/m2 and moderate PPM as an indexed orifice area ≤0.85 cm2/m2 measured using echocardiography. Exercise capacity was reported as percentage of predicted exercise capacity (PPEC). Of the 207 patients, 68% was male, 71% had a mechanical prosthesis and mean age at inclusion was 43.9 years ±11.4. The prevalence of PPM was 42%, comprising 23% severe PPM and 19% moderate PPM. Prevalence of PPM was higher in patients with mechanical prostheses (p <0.001). PPM was associated with poorer exercise capacity (mean PPEC 84% vs. 92%; p=0.048, mean difference =-8.3%, p=0.047). Mean follow-up was 2.6±1.1 years during which New York Heart Association (NYHA) class remained stable in most patients. PPM showed no significant effect on death or hospitalisation during follow-up (p=0.218). In this study we report a high prevalence (42%) of PPM in ACHD with an aortic valve prosthesis and an independent association of PPM with diminished exercise capacit

    Interallelic complementation provides functional evidence for cohesin–cohesin interactions on DNA

    No full text
    The cohesin complex (Mcd1p, Smc1p, Smc3p, and Scc3p) has multiple roles in chromosome architecture, such as promoting sister chromatid cohesion, chromosome condensation, DNA repair, and transcriptional regulation. The prevailing embrace model for sister chromatid cohesion posits that a single cohesin complex entraps both sister chromatids. We report interallelic complementation between pairs of nonfunctional mcd1 alleles (mcd1-1 and mcd1-Q266) or smc3 alleles (smc3-42 and smc3-K113R). Cells bearing individual mcd1 or smc3 mutant alleles are inviable and defective for both sister chromatid cohesion and condensation. However, cells coexpressing two defective mcd1 or two defective smc3 alleles are viable and have cohesion and condensation. Because cohesin contains only a single copy of Smc3p or Mcd1p, these examples of interallelic complementation must result from interplay or communication between the two defective cohesin complexes, each harboring one of the mutant allele products. Neither mcd1-1p nor smc3-42p is bound to chromosomes when expressed individually at its restrictive temperature. However, their chromosome binding is restored when they are coexpressed with their chromosome-bound interallelic complementing partner. Our results support a mechanism by which multiple cohesin complexes interact on DNA to mediate cohesion and condensation

    Structure of the cohesin loader Scc2

    Get PDF
    The functions of cohesin are central to genome integrity, chromosome organization and transcription regulation through its prevention of premature sister-chromatid separation and the formation of DNA loops. The loading of cohesin onto chromatin depends on the Scc2–Scc4 complex; however, little is known about how it stimulates the cohesion-loading activity. Here we determine the large ‘hook' structure of Scc2 responsible for catalysing cohesin loading. We identify key Scc2 surfaces that are crucial for cohesin loading in vivo. With the aid of previously determined structures and homology modelling, we derive a pseudo-atomic structure of the full-length Scc2–Scc4 complex. Finally, using recombinantly purified Scc2–Scc4 and cohesin, we performed crosslinking mass spectrometry and interaction assays that suggest Scc2–Scc4 uses its modular structure to make multiple contacts with cohesin
    corecore