18 research outputs found

    The A-B transition in superfluid helium-3 under confinement in a thin slab geometry

    Get PDF
    The influence of confinement on the topological phases of superfluid 3He is studied using the torsional pendulum method. We focus on the phase transition between the chiral A-phase and the time-reversal-invariant B-phase, motivated by the prediction of a spatiallymodulated (stripe) phase at the A-B phase boundary. We confine superfluid 3He to a single 1.08 {\mu}m thick nanofluidic cavity incorporated into a high-precision torsion pendulum, and map the phase diagram between 0.1 and 5.6 bar. We observe only small supercooling of the A-phase, in comparison to bulk or when confined in aerogel. This has a non-monotonic pressure dependence, suggesting that a new intrinsic B-phase nucleation mechanism operates under confinement, mediated by the putative stripe phase. Both the phase diagram and the relative superfluid fraction of the A and B phases, show that strong coupling is present at all pressures, with implications for the stability of the stripe phase.Comment: 6 figures, 1 table + supplemental informatio

    Gene Expression in a Drosophila Model of Mitochondrial Disease

    Get PDF
    Background A point mutation in the Drosophila gene technical knockout (tko), encoding mitoribosomal protein S12, was previously shown to cause a phenotype of respiratory chain deficiency, developmental delay, and neurological abnormalities similar to those presented in many human mitochondrial disorders, as well as defective courtship behavior. Methodology/Principal Findings Here, we describe a transcriptome-wide analysis of gene expression in tko25t mutant flies that revealed systematic and compensatory changes in the expression of genes connected with metabolism, including up-regulation of lactate dehydrogenase and of many genes involved in the catabolism of fats and proteins, and various anaplerotic pathways. Gut-specific enzymes involved in the primary mobilization of dietary fats and proteins, as well as a number of transport functions, were also strongly up-regulated, consistent with the idea that oxidative phosphorylation OXPHOS dysfunction is perceived physiologically as a starvation for particular biomolecules. In addition, many stress-response genes were induced. Other changes may reflect a signature of developmental delay, notably a down-regulation of genes connected with reproduction, including gametogenesis, as well as courtship behavior in males; logically this represents a programmed response to a mitochondrially generated starvation signal. The underlying signalling pathway, if conserved, could influence many physiological processes in response to nutritional stress, although any such pathway involved remains unidentified. Conclusions/Significance These studies indicate that general and organ-specific metabolism is transformed in response to mitochondrial dysfunction, including digestive and absorptive functions, and give important clues as to how novel therapeutic strategies for mitochondrial disorders might be developed.Public Library of Scienc

    Autosomal recessive cerebellar ataxias

    Get PDF
    Autosomal recessive cerebellar ataxias (ARCA) are a heterogeneous group of rare neurological disorders involving both central and peripheral nervous system, and in some case other systems and organs, and characterized by degeneration or abnormal development of cerebellum and spinal cord, autosomal recessive inheritance and, in most cases, early onset occurring before the age of 20 years. This group encompasses a large number of rare diseases, the most frequent in Caucasian population being Friedreich ataxia (estimated prevalence 2–4/100,000), ataxia-telangiectasia (1–2.5/100,000) and early onset cerebellar ataxia with retained tendon reflexes (1/100,000). Other forms ARCA are much less common. Based on clinicogenetic criteria, five main types ARCA can be distinguished: congenital ataxias (developmental disorder), ataxias associated with metabolic disorders, ataxias with a DNA repair defect, degenerative ataxias, and ataxia associated with other features. These diseases are due to mutations in specific genes, some of which have been identified, such as frataxin in Friedreich ataxia, α-tocopherol transfer protein in ataxia with vitamin E deficiency (AVED), aprataxin in ataxia with oculomotor apraxia (AOA1), and senataxin in ataxia with oculomotor apraxia (AOA2). Clinical diagnosis is confirmed by ancillary tests such as neuroimaging (magnetic resonance imaging, scanning), electrophysiological examination, and mutation analysis when the causative gene is identified. Correct clinical and genetic diagnosis is important for appropriate genetic counseling and prognosis and, in some instances, pharmacological treatment. Due to autosomal recessive inheritance, previous familial history of affected individuals is unlikely. For most ARCA there is no specific drug treatment except for coenzyme Q10 deficiency and abetalipoproteinemia

    Double-quantum vortex in superfluid He-3-A

    No full text
    Linear defects are generic in continuous media(1). In quantum systems they appear as topological line defects which are associated with a circulating persistent current. In relativistic quantum field theories they are known as cosmic strings(2), in superconductors as quantized flux lines(3), and in superfluids(3,4) and low-density Bose-Einstein condensates(5) as quantized vortex lines. A conventional quantized vortex Line consists of a central core around which the phase of the order parameter winds by 2 pi n, while within the core the order parameter vanishes or is depleted from the bulk value. Usually vortices are singly quantized (that is, have n = 1). But it has been theoretically predicted that, in superfluid He-3-A, vortex lines are possible that have n = 2 and continuous structure, so that the orientation of the multicomponent order parameter changes smoothly throughout the vortex while the amplitude remains constant. Here we report direct proof, based on high-resolution nuclear magnetic resonance measurements, that the most common vortex line in He-3-A has n = 2. One vortex line after another is observed to form in a regular periodic process, similar to a phase-slip in the Josephson effect

    Light Higgs channel of the resonant decay of magnon condensate in superfluid 3He-B

    No full text
    In superfluids the order parameter, which describes spontaneous symmetry breaking, is an analogue of the Higgs field in the Standard Model of particle physics. Oscillations of the field amplitude are massive Higgs bosons, while oscillations of the orientation are massless Nambu-Goldstone bosons. The 125 GeV Higgs boson, discovered at Large Hadron Collider, is light compared with electroweak energy scale. Here, we show that such light Higgs exists in superfluid He-3-B, where one of three Nambu-Goldstone spin-wave modes acquires small mass due to the spin-orbit interaction. Other modes become optical and acoustic magnons. We observe parametric decay of Bose-Einstein condensate of optical magnons to light Higgs modes and decay of optical to acoustic magnons. Formation of a light Higgs from a Nambu-Goldstone mode observed in He-3-B opens a possibility that such scenario can be realized in other systems, where violation of some hidden symmetry is possible, including the Standard Model.Peer reviewe
    corecore