114 research outputs found

    Structural analysis and corrosion studies on an ISO 5832-9 biomedical alloy with TiO2 sol–gel layers

    Get PDF
    The aim of this study was to demonstrate the relationship between the structural and corrosion properties of an ISO 5832-9 biomedical alloy modified with titanium dioxide (TiO2) layers. These layers were obtained via the sol–gel method by acid-catalyzed hydrolysis of titanium isopropoxide in isopropanol solution. To obtain TiO2 layers with different structural properties, the coated samples were annealed at temperatures of 200, 300, 400, 450, 500, 600 and 800 C for 2 h. For all the prepared samples, accelerated corrosion measurements were performed in Tyrode’s physiological solution using electrochemical methods. The most important corrosion parameters were determined: corrosion potential, polarization resistance, corrosion rate, breakdown and repassivation potentials. Corrosion damage was analyzed using scanning electron microscopy. Structural analysis was carried out for selected TiO2 coatings annealed at 200, 400, 600 and 800 C. In addition, the morphology, chemical composition, crystallinity, thickness and density of the deposited TiO2 layers were determined using suitable electron and X-ray measurement methods. It was shown that the structure and character of interactions between substrate and deposited TiO2 layers depended on annealing temperature. All the obtained TiO2 coatings exhibit anticorrosion properties, but these properties are related to the crystalline structure and character of substrate–layer interaction. From the point of view of corrosion, the best TiO2 sol–gel coatings for stainless steel intended for biomedical applications seem to be those obtained at 400 C.This study was supported by Grant No. N N507 501339 of the National Science Centre. The authors wish to express their thanks to J. Borowski (MEDGAL, Poland) for the Rex 734 alloy

    The Classic: A Morphogenetic Matrix for Differentiation of Cartilage in Tissue Culture

    Get PDF
    This Classic Article is a reprint of the original work by Hiroshi Nogami and Marshall R. Urist, A Morphogenetic Matrix for Differentiation of Cartilage in Tissue Culture. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1068-3; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is © 1970 by the Society for Experimental Biology and Medicine and is reprinted with permission from Nogami H, Urist MR. A morphogenetic matrix for differentiation of cartilage in tissue culture. Proc Soc Exp Biol Med. 1970;134;530–535

    A Full Suite of Histone and Histone Modifying Genes Are Transcribed in the Dinoflagellate Lingulodinium

    Get PDF
    BACKGROUND: Dinoflagellates typically lack histones and nucleosomes are not observed in DNA spreads. However, recent studies have shown the presence of core histone mRNA sequences scattered among different dinoflagellate species. To date, the presence of all components required for manufacturing and modifying nucleosomes in a single dinoflagellate species has not been confirmed. METHODOLOGY AND RESULTS: Analysis of a Lingulodinium transcriptome obtained by Illumina sequencing of mRNA shows several different copies of each of the four core histones as well as a suite of histone modifying enzymes and histone chaperone proteins. Phylogenetic analysis shows one of each Lingulodinium histone copies belongs to the dinoflagellate clade while the second is more divergent and does not share a common ancestor. All histone mRNAs are in low abundance (roughly 25 times lower than higher plants) and transcript levels do not vary over the cell cycle. We also tested Lingulodinium extracts for histone proteins using immunoblotting and LC-MS/MS, but were unable to confirm histone expression at the protein level. CONCLUSION: We show that all core histone sequences are present in the Lingulodinium transcriptome. The conservation of these sequences, even though histone protein accumulation remains below currently detectable levels, strongly suggests dinoflagellates possess histones

    Klebsiella pneumoniae related community-acquired acute lower respiratory infections in CAMBODIA: clinical characteristics and treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In many Asian countries, <it>Klebsiella pneumoniae </it>(KP) is the second pathogen responsible for community-acquired pneumonia. Yet, very little is known about <it>KP </it>etiology in ALRI in Cambodia, a country that has one of the weakest medical infrastructures in the region. We present here the first clinico-radiological description of <it>KP </it>community-acquired ALRI in hospitalized Cambodian patients.</p> <p>Methods</p> <p>Through ALRI surveillance in two provincial hospitals, <it>KP </it>was isolated from sputum and blood cultures, and identified by API20E gallery from patients ≥ 5 years-old with fever and respiratory symptoms onset ≤14 days. Antibiotics susceptibility testing was provided systematically to clinicians when bacteria were isolated. We collected patients' clinical, radiological and microbiological data and their outcome 3 months after discharge. We also compared <it>KP</it>-related with other bacteria-related ALRI to determine risk factors for <it>KP </it>infection.</p> <p>Results</p> <p>From April 2007 to December 2009, 2315 ALRI patients ≥ 5 years-old were enrolled including 587 whose bacterial etiology could be assigned. Of these, 47 (8.0%) had <it>KP </it>infection; their median age was 55 years and 68.1% were females. Reported prior medication was high (42.5%). Patients' chest radiographs showed pneumonia (61.3% including 39% that were necrotizing), preexisting parenchyma lesions (29.5%) and pleural effusions alone (4.5%) and normal parenchyma (4.5%). Five patients had severe conditions on admission and one patient died during hospitalization. Of the 39 patients that were hospital discharged, 14 died including 12 within 1 month after discharge. Only 13 patients (28%) received an appropriate antibiotherapy. Extended-spectrum beta-lactamases (ESBL) - producing strains were found in 8 (17.0%) patients. Female gender (Odds ratio (OR) 2.1; <it>p </it>= 0.04) and diabetes mellitus (OR 3.1; <it>p </it>= 0.03) were independent risk factors for <it>KP</it>-related ALRI.</p> <p>Conclusions</p> <p><it>KP </it>ALRI in Cambodia has high fatality rate, are more frequently found in women, and should be considered in diabetic patients. The extremely high frequency of ESBL-producing strains in the study is alarming in the context of uncontrolled antibiotic consumption and in absence of microbiology capacity in most public-sector hospitals.</p

    Long-term cyclic persistence in an experimental predator–prey system

    Get PDF
    Predator–prey cycles rank among the most fundamental concepts in ecology, are predicted by the simplest ecological models and enable, theoretically, the indefinite persistence of predator and prey1,2,3,4. However, it remains an open question for how long cyclic dynamics can be self-sustained in real communities. Field observations have been restricted to a few cycle periods5,6,7,8 and experimental studies indicate that oscillations may be short-lived without external stabilizing factors9,10,11,12,13,14,15,16,17,18,19. Here we performed microcosm experiments with a planktonic predator–prey system and repeatedly observed oscillatory time series of unprecedented length that persisted for up to around 50 cycles or approximately 300 predator generations. The dominant type of dynamics was characterized by regular, coherent oscillations with a nearly constant predator–prey phase difference. Despite constant experimental conditions, we also observed shorter episodes of irregular, non-coherent oscillations without any significant phase relationship. However, the predator–prey system showed a strong tendency to return to the dominant dynamical regime with a defined phase relationship. A mathematical model suggests that stochasticity is probably responsible for the reversible shift from coherent to non-coherent oscillations, a notion that was supported by experiments with external forcing by pulsed nutrient supply. Our findings empirically demonstrate the potential for infinite persistence of predator and prey populations in a cyclic dynamic regime that shows resilience in the presence of stochastic events

    Genetic indicators of iron limitation in wild populations of \u3cem\u3eThalassiosira oceanica\u3c/em\u3e from the northeast Pacific Ocean

    Get PDF
    Assessing the iron (Fe) nutritional status of natural diatom populations has proven challenging as physiological and molecular responses can differ in diatoms of the same genus. We evaluated expression of genes encoding flavodoxin (FLDA1) and an Fe-starvation induced protein (ISIP3) as indicators of Fe limitation in the marine diatom Thalassiosira oceanica. The specificity of the response to Fe limitation was tested in cultures grown under Fe- and macronutrient-deficient conditions, as well as throughout the diurnal light cycle. Both genes showed a robust and specific response to Fe limitation in laboratory cultures and were detected in small volume samples collected from the northeast Pacific, demonstrating the sensitivity of this method. Overall, FLDA1 and ISIP3 expression was inversely related to Fe concentrations and offered insight into the Fe nutritional health of T. oceanica in the field. As T. oceanica is a species tolerant to low Fe, indications of Fe limitation in T. oceanica populations may serve as a proxy for severe Fe stress in the overall diatom community. At two shallow coastal locations, FLD1A and ISIP3 expression revealed Fe stress in areas where dissolved Fe concentrations were high, demonstrating that this approach may be powerful for identifying regions where Fe supply may not be biologically available

    Testing the Waste Based Biorefinery Concept: Pilot Scale Cultivation of Microalgal Species on Spent Anaerobic Digestate Fluids

    Get PDF
    PurposeA waste based biorefinery approach has been tested.MethodsThis has been investigated by culturing in a 800 L photobioreactor two autotrophic microalgae namely Nannochloropsis oceanica and Scenedesmus quadricauda utilising filtered spent anaerobic digestate fluids of N:P ratio 14.22 as substrate.ResultsSignificant rates of bioremediation simultaneously with biomass and associated end product formation were achieved. Nitrogen and phosphorus of waste based media was decreased up to 90%. The biomass biochemical analysis of the microalgae when grown on the waste based formulated media demonstrated the comparable content of lipids and proteins with the species grown on f/2 media.ConclusionsTheoretical biomethane potential generation, should the algal cultures be placed in an anaerobic digester, was calculated at 0.58 L CH4 g−1 VS for N. oceanica and 0.48 L CH4 g−1 VS for S. quadricauda showing comparable results with other studies of different source of biomass

    Food Quality Affects Secondary Consumers Even at Low Quantities: An Experimental Test with Larval European Lobster

    Get PDF
    The issues of food quality and food quantity are crucial for trophic interactions. Although most research has focussed on the primary producer – herbivore link, recent studies have shown that quality effects at the bottom of the food web propagate to higher trophic levels. Negative effects of poor food quality have almost exclusively been demonstrated at higher food quantities. Whether these negative effects have the same impact at low food availability in situations where the majority if not all of the resources are channelled into routine metabolism, is under debate. In this study a tri-trophic food chain was designed, consisting of the algae Rhodomonas salina, the copepod Acartia tonsa and freshly hatched larvae of the European lobster Homarus gammarus. The lobster larvae were presented with food of two different qualities (C∶P ratios) and four different quantities to investigate the combined effects of food quality and quantity. Our results show that the quality of food has an impact on the condition of lobster larvae even at very low food quantities. Food with a lower C∶P content resulted in higher condition of the lobster larvae regardless of the quantity of food. These interacting effects of food quality and food quantity can have far reaching consequences for ecosystem productivity

    Adjusted Light and Dark Cycles Can Optimize Photosynthetic Efficiency in Algae Growing in Photobioreactors

    Get PDF
    Biofuels from algae are highly interesting as renewable energy sources to replace, at least partially, fossil fuels, but great research efforts are still needed to optimize growth parameters to develop competitive large-scale cultivation systems. One factor with a seminal influence on productivity is light availability. Light energy fully supports algal growth, but it leads to oxidative stress if illumination is in excess. In this work, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a flat-bed photobioreactor designed to minimize cells self-shading. The influence of various light intensities was studied with both continuous illumination and alternation of light and dark cycles at various frequencies, which mimic illumination variations in a photobioreactor due to mixing. Results show that Nannochloropsis can efficiently exploit even very intense light, provided that dark cycles occur to allow for re-oxidation of the electron transporters of the photosynthetic apparatus. If alternation of light and dark is not optimal, algae undergo radiation damage and photosynthetic productivity is greatly reduced. Our results demonstrate that, in a photobioreactor for the cultivation of algae, optimizing mixing is essential in order to ensure that the algae exploit light energy efficiently

    Influence of phosphorus on copper sensitivity of fluvial periphyton: the role of chemical, physiological and community-related factors

    Get PDF
    The influence of eutrophication of fluvial ecosystems (caused by increased phosphorus concentrations) on periphyton Cu sensitivity is explored from a multi-scale perspective, going from the field to the laboratory. The study design included three tiers: a field study including the characterization of land use and the ecological state of the corresponding river sections in the Fluvià River watershed, an experimental investigation performed with natural periphyton from the previously studied stream sites in indoor channels, and finally a culture study in the laboratory. Results showed that differences in copper sensitivity of natural periphyton communities followed the gradient of nutrient concentration found in the field. Results from the culture experiments demonstrated that both, P-conditions during growth and P-content in the media are important factors modulating the toxicological response of algae to Cu. The observations from this study indicate that the ecological effects of metal pollution in rivers might be obscured by eutrophication
    corecore