267 research outputs found

    Biochemical profile of heifers with spontaneous humeral fractures suggest that protein-energy malnutrition could be an important factor in the pathology of this disease.

    Get PDF
    CAUL Read and Publish Agreement.CASE HISTORY: Serum and liver samples from 35, 2-year-old dairy heifers that had fractured one or both humeri post-calving between July and December 2019 were submitted to a diagnostic laboratory for analysis. Serum samples were analysed for albumin, β-hydroxybutyrate (BHB), creatinine, Ca, Mg, phosphate, non-esterified fatty acids (NEFA), and serum Cu concentration. Liver samples were analysed for liver Cu concentration. Data were compared to published reference intervals. Data values for heifers that prior to fracture had grazed fodder beet were also compared to values for those that had grazed pasture. CLINICAL FINDINGS: Sixty-nine percent of heifers with humeral fracture had serum creatinine concentrations below the lower value of the reference range (55-130 µmol/L). In 3/32 (9%) heifers, serum NEFA concentrations were increased above the reference value indicating body fat mobilisation (≥1.2 mmol/L for peri-partum cows) and in 20/35 (57%) heifers BHB serum concentrations were above the reference value indicating subclinical ketosis (≥1.1 mmol/L for peri-partum cows). In 24/35 (69%) heifers, liver Cu concentration was low (≤ 44 µmol/kg) or marginal (45-94 µmol/kg). The concentration of Cu in serum was low (≤ 4.5 µmol/L) in 2/33 (6%) heifers and marginal (4.6-7.9 µmol/L) in 5/33 (15%) heifers. There was moderate positive correlation between the logged concentrations of Cu in paired liver and serum samples, r(31) = 0.43; (95% CI = 0.1-0.79; p = 0.014). One heifer had a serum phosphate concentration below the lower limit of the reference range (< 1.10 mmol/L). For all heifers, the concentrations of albumin, Ca, and Mg in serum were within the reference intervals (23-38 g/L, 2.00-2.60 mmol/L, and 0.49-1.15 mmol/L respectively). Over winter, 15/35 (43%) heifers grazed predominantly pasture, 14/35 (40%) grazed fodder beet and 6/35 (17%) had a mixed diet. CLINICAL RELEVANCE: In some of these heifers with humeral fractures, there was evidence for protein and/or energy malnutrition in the form of elevated NEFA and BHB concentrations and low creatinine concentrations in serum. Liver Cu concentrations were also reduced in most affected heifers. However, the absence of a control group means it is not possible to determine if these are risk factors for fracture or features common to all periparturient heifers. Clinical trials and molecular studies are needed to determine the true contribution of Cu and protein-energy metabolism to the pathogenesis of spontaneous humeral fractures in dairy heifers. ABBREVIATIONS: BHB: ß-hydroxybutyrate; NEFA: Non-esterified fatty acids.Publishe

    Bone quality changes as measured by Raman and FTIR spectroscopy in primiparous cows with humeral fracture from New Zealand.

    Get PDF
    The occurrence of spontaneous humeral fractures in primiparous dairy cows from New Zealand prompted the study of bone material from affected cows to further characterize this condition and to outline a likely pathogenesis. Previous studies indicate that these cows developed osteoporosis due to periods of suboptimal bone formation followed by increased bone resorption during the period of lactation complicated by copper deficiency. We hypothesized that there are significant differences in the chemical composition/bone quality in bones from cows with spontaneous humeral fracture compared to cows without humeral fractures. In this study, Raman and Fourier transform infrared spectroscopy band ratios were, for the first time, measured, calculated, and compared in bone samples from 67 primiparous dairy cows that suffered a spontaneous fracture of the humerus and 14 age-matched post-calving cows without humeral fractures. Affected bone showed a significantly reduced mineral/matrix ratio, increased bone remodeling, newer bone tissue with lower mineralization and, lower carbonate substitution, and reduced crystallinity. As such, is likely that these have detrimentally impacted bone quality and strength in affected cows.Published onlin

    A Novel Nonsense Mutation in the DMP1 Gene Identified by a Genome-Wide Association Study Is Responsible for Inherited Rickets in Corriedale Sheep

    Get PDF
    Inherited rickets of Corriedale sheep is characterized by decreased growth rate, thoracic lordosis and angular limb deformities. Previous outcross and backcross studies implicate inheritance as a simple autosomal recessive disorder. A genome wide association study was conducted using the Illumina OvineSNP50 BeadChip on 20 related sheep comprising 17 affected and 3 carriers. A homozygous region of 125 consecutive single-nucleotide polymorphism (SNP) loci was identified in all affected sheep, covering a region of 6 Mb on ovine chromosome 6. Among 35 candidate genes in this region, the dentin matrix protein 1 gene (DMP1) was sequenced to reveal a nonsense mutation 250C/T on exon 6. This mutation introduced a stop codon (R145X) and could truncate C-terminal amino acids. Genotyping by PCR-RFLP for this mutation showed all 17 affected sheep were “T T” genotypes; the 3 carriers were “C T”; 24 phenotypically normal related sheep were either “C T” or “C C”; and 46 unrelated normal control sheep from other breeds were all “C C”. The other SNPs in DMP1 were not concordant with the disease and can all be ruled out as candidates. Previous research has shown that mutations in the DMP1 gene are responsible for autosomal recessive hypophosphatemic rickets in humans. Dmp1_knockout mice exhibit rickets phenotypes. We believe the R145X mutation to be responsible for the inherited rickets found in Corriedale sheep. A simple diagnostic test can be designed to identify carriers with the defective “T” allele. Affected sheep could be used as animal models for this form of human rickets, and for further investigation of the role of DMP1 in phosphate homeostasis

    Global Hopf bifurcation in the ZIP regulatory system

    Get PDF
    Regulation of zinc uptake in roots of Arabidopsis thaliana has recently been modeled by a system of ordinary differential equations based on the uptake of zinc, expression of a transporter protein and the interaction between an activator and inhibitor. For certain parameter choices the steady state of this model becomes unstable upon variation in the external zinc concentration. Numerical results show periodic orbits emerging between two critical values of the external zinc concentration. Here we show the existence of a global Hopf bifurcation with a continuous family of stable periodic orbits between two Hopf bifurcation points. The stability of the orbits in a neighborhood of the bifurcation points is analyzed by deriving the normal form, while the stability of the orbits in the global continuation is shown by calculation of the Floquet multipliers. From a biological point of view, stable periodic orbits lead to potentially toxic zinc peaks in plant cells. Buffering is believed to be an efficient way to deal with strong transient variations in zinc supply. We extend the model by a buffer reaction and analyze the stability of the steady state in dependence of the properties of this reaction. We find that a large enough equilibrium constant of the buffering reaction stabilizes the steady state and prevents the development of oscillations. Hence, our results suggest that buffering has a key role in the dynamics of zinc homeostasis in plant cells.Comment: 22 pages, 5 figures, uses svjour3.cl

    KSHV PAN RNA Associates with Demethylases UTX and JMJD3 to Activate Lytic Replication through a Physical Interaction with the Virus Genome

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) is the cause of Kaposi's sarcoma and body cavity lymphomas. KSHV lytic infection produces PAN RNA, a highly abundant noncoding polyadenylated transcript that is retained in the nucleus. We recently demonstrated that PAN RNA interacts with several viral and cellular factors and can disregulate the expression of genes that modulate immune response. In an effort to define the role of PAN RNA in the context of the virus genome we generated a recombinant BACmid that deleted the PAN RNA locus. Because of the apparent duplication of the PAN RNA locus in BAC36, we generated BAC36CR, a recombinant BACmid that removes the duplicated region. BAC36CR was used as a template to delete most of the PAN RNA locus to generate BAC36CRΔPAN. BAC36CRΔPAN failed to produce supernatant virus and displayed a general decrease in mRNA accumulation of representative immediate early, early and late genes. Most strikingly, K-Rta expression was decreased in lytically induced BAC36CRΔPAN-containing cell lines at early and late time points post induction. Expression of PAN RNA in trans in BAC36CRΔPAN containing cells resulted in an increase in K-Rta expression, however K-Rta over expression failed to rescue BAC36CRΔPAN, suggesting that PAN RNA plays a wider role in virus replication. To investigate the role of PAN RNA in the activation of K-Rta expression, we demonstrate that PAN RNA physically interacts with the ORF50 promoter. RNA chromatin immunoprecipitation assays show that PAN RNA interacts with demethylases JMJD3 and UTX, and the histone methyltransferase MLL2. Consistent with the interaction with demethylases, expression of PAN RNA results in a decrease of the repressive H3K27me3 mark at the ORF50 promoter. These data support a model where PAN RNA is a multifunctional regulatory transcript that controls KSHV gene expression by mediating the modification of chromatin by targeting the KSHV repressed genome

    X-Ray Fluorescence Microscopy Reveals Accumulation and Secretion of Discrete Intracellular Zinc Pools in the Lactating Mouse Mammary Gland

    Get PDF
    The mammary gland is responsible for the transfer of a tremendous amount of zinc ( approximately 1-3 mg zinc/day) from maternal circulation into milk during lactation to support the growth and development of the offspring. When this process is compromised, severe zinc deficiency compromises neuronal development and immune function and increases infant morbidity and/or mortality. It remains unclear as to how the lactating mammary gland dynamically integrates zinc import from maternal circulation with the enormous amount of zinc that is secreted into milk.Herein we utilized X-ray fluorescence microscopy (XFM) which allowed for the visualization and quantification of the process of zinc transfer through the mammary gland of the lactating mouse. Our data illustrate that a large amount of zinc first accumulates in the mammary gland during lactation. Interestingly, this zinc is not cytosolic, but accumulated in large, discrete sub-cellular compartments. These zinc pools were then redistributed to small intracellular vesicles destined for secretion in a prolactin-responsive manner. Confocal microscopy identified mitochondria and the Golgi apparatus as the sub-cellular compartments which accumulate zinc; however, zinc pools in the Golgi apparatus, but not mitochondria are redistributed to vesicles destined for secretion during lactation.Our data directly implicate the Golgi apparatus in providing a large, mobilizable zinc storage pool to assist in providing for the tremendous amount of zinc that is secreted into milk. Interestingly, our study also provides compelling evidence that mitochondrial zinc pools expand in the mammary gland during lactation which we speculate may play a role in regulating mammary gland function

    Importance of lysosomal cysteine proteases in lung disease

    Get PDF
    The human lysosomal cysteine proteases are a family of 11 proteases whose members include cathepsins B, C, H, L, and S. The biology of these proteases was largely ignored for decades because of their lysosomal location and the belief that their function was limited to the terminal degradation of proteins. In the past 10 years, this view has changed as these proteases have been found to have specific functions within cells. This review highlights some of these functions, specifically their roles in matrix remodeling and in regulating the immune response, and their relationship to lung diseases

    Abortive Lytic Reactivation of KSHV in CBF1/CSL Deficient Human B Cell Lines

    Get PDF
    Since Kaposi's sarcoma associated herpesvirus (KSHV) establishes a persistent infection in human B cells, B cells are a critical compartment for viral pathogenesis. RTA, the replication and transcription activator of KSHV, can either directly bind to DNA or use cellular DNA binding factors including CBF1/CSL as DNA adaptors. In addition, the viral factors LANA1 and vIRF4 are known to bind to CBF1/CSL and modulate RTA activity. To analyze the contribution of CBF1/CSL to reactivation in human B cells, we have successfully infected DG75 and DG75 CBF1/CSL knock-out cell lines with recombinant KSHV.219 and selected for viral maintenance by selective medium. Both lines maintained the virus irrespective of their CBF1/CSL status. Viral reactivation could be initiated in both B cell lines but viral genome replication was attenuated in CBF1/CSL deficient lines, which also failed to produce detectable levels of infectious virus. Induction of immediate early, early and late viral genes was impaired in CBF1/CSL deficient cells at multiple stages of the reactivation process but could be restored to wild-type levels by reintroduction of CBF1/CSL. To identify additional viral RTA target genes, which are directly controlled by CBF1/CSL, we analyzed promoters of a selected subset of viral genes. We show that the induction of the late viral genes ORF29a and ORF65 by RTA is strongly enhanced by CBF1/CSL. Orthologs of ORF29a in other herpesviruses are part of the terminase complex required for viral packaging. ORF65 encodes the small capsid protein essential for capsid shell assembly. Our study demonstrates for the first time that in human B cells viral replication can be initiated in the absence of CBF1/CSL but the reactivation process is severely attenuated at all stages and does not lead to virion production. Thus, CBF1/CSL acts as a global hub which is used by the virus to coordinate the lytic cascade

    Zinc-Regulated DNA Binding of the Yeast Zap1 Zinc-Responsive Activator

    Get PDF
    The Zap1 transcription factor of Saccharomyces cerevisiae plays a central role in zinc homeostasis by controlling the expression of genes involved in zinc metabolism. Zap1 is active in zinc-limited cells and repressed in replete cells. At the transcriptional level, Zap1 controls its own expression via positive autoregulation. In addition, Zap1's two activation domains are regulated independently of each other by zinc binding directly to those regions and repressing activation function. In this report, we show that Zap1 DNA binding is also inhibited by zinc. DMS footprinting showed that Zap1 target gene promoter occupancy is regulated with or without transcriptional autoregulation. These results were confirmed using chromatin immunoprecipitation. Zinc regulation of DNA binding activity mapped to the DNA binding domain indicating other parts of Zap1 are unnecessary for this control. Overexpression of Zap1 overrode DNA binding regulation and resulted in constitutive promoter occupancy. Under these conditions of constitutive binding, both the zinc dose response of Zap1 activity and cellular zinc accumulation were altered suggesting the importance of DNA binding control to zinc homeostasis. Thus, our results indicated that zinc regulates Zap1 activity post-translationally via three independent mechanisms, all of which contribute to the overall zinc responsiveness of Zap1

    ETS1 Mediates MEK1/2-Dependent Overexpression of Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) in Human Cancer Cells

    Get PDF
    EGFR-MEK-ERK signaling pathway has an established role in promoting malignant growth and disease progression in human cancers. Therefore identification of transcriptional targets mediating the oncogenic effects of the EGFR-MEK-ERK pathway would be highly relevant. Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a recently characterized human oncoprotein. CIP2A promotes malignant cell growth and is over expressed at high frequency (40–80%) in most of the human cancer types. However, the mechanisms inducing its expression in cancer still remain largely unexplored. Here we present systematic analysis of contribution of potential gene regulatory mechanisms for high CIP2A expression in cancer. Our data shows that evolutionary conserved CpG islands at the proximal CIP2A promoter are not methylated both in normal and cancer cells. Furthermore, sequencing of the active CIP2A promoter region from altogether seven normal and malignant cell types did not reveal any sequence alterations that would increase CIP2A expression specifically in cancer cells. However, treatment of cancer cells with various signaling pathway inhibitors revealed that CIP2A mRNA expression was sensitive to inhibition of EGFR activity as well as inhibition or activation of MEK-ERK pathway. Moreover, MEK1/2-specific siRNAs decreased CIP2A protein expression. Series of CIP2A promoter-luciferase constructs were created to identify proximal −27 to −107 promoter region responsible for MEK-dependent stimulation of CIP2A expression. Additional mutagenesis and chromatin immunoprecipitation experiments revealed ETS1 as the transcription factor mediating stimulation of CIP2A expression through EGFR-MEK pathway. Thus, ETS1 is probably mediating high CIP2A expression in human cancers with increased EGFR-MEK1/2-ERK pathway activity. These results also suggest that in addition to its established role in invasion and angiogenesis, ETS1 may support malignant cellular growth via regulation of CIP2A expression and protein phosphatase 2A inhibition
    corecore