1,086 research outputs found

    Season length, body size, and social polymorphism: size clines but not saw tooth clines in sweat bees

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.1. Annual insects are predicted to grow larger where the growing season is longer. However, transitions from one to two generations per year can occur when the season becomes sufficiently long, and are predicted to result in a sharp decrease in body size because available development time is halved. The potential for resulting saw-tooth clines has been investigated only in solitary taxa with free-living larvae. 2. Size clines were investigated in two socially polymorphic sweat bees (Halictidae): transitions between solitary and social nesting occur along gradients of increasing season length, characterised by the absence or presence of workers and offspring that are individually mass provisioned by adults. How the body size changes with season length was examined, and whether transitions in social phenotype generate saw-tooth size clines. We measured Lasioglossum calceatum and Halictus rubicundus nest foundresses originating from more than 1000 km of latitude, encompassing the transition between social and solitary nesting. 3. Using satellite-collected temperature data to estimate season length, it was shown that both species were largest where the season was longest. Body size increased linearly with season length in L. calceatum and non-linearly in H. rubicundus but the existence of saw-tooth clines was not supported. 4. The present results suggest that because the amount of food consumed by offspring during development is determined by adults, environmental and social influences on the provisioning strategies of adult bees may be more important factors than available feeding time in determining offspring body size in socially polymorphic sweat bees.Natural Environment Research Council and the University of Sussex studentship. Grant Number: 111996

    The distribution of deep-sea sponge aggregations (Porifera) in relation to oceanographic processes in the Faroe-Shetland Channel.

    Get PDF
    Deep-sea sponge aggregations have been identified as potential Vulnerable Marine Ecosystems under United Nations General Assembly Resolution 61/105. Understanding the distribution of these habitats is critical to future spatial management efforts, and central to this understanding are quantitative data on the environmental drivers of that distribution. Accumulations of large suspension feeders are hypothesised to aggregate in regions of internal wave formation. The causal link is thought to be an increase in the supply of food related to the incidence of internal waves, which results in resuspension of particulate organic matter on which the sponges feed. There is, however, almost no empirical evidence to support this hypothesis for deep-sea sponge aggregations, although there is strong circumstantial evidence. We tested the relationship between sponge density and 1) temperature range (as a measure of internal wave presence in this region), and 2) optical backscatter (a measure of particulate flux) for a known sponge aggregation in the Faroe-Shetland Channel where internal wave interaction with the slope is further well-documented. 25 benthic video transects, ranging from 422 to 979 m water depth were conducted in the study region. 225 images were analysed and all taxa identified to morphotypes and quantified. Temperature and optical backscatter data were drawn from archived CTD data, and data from long term (4 months) and 2 seasonal short term (11 days) mooring deployments from the region. A generalised linear model was used to test the relationship between sponge density and temperature range (ΔT), and sponge density and optical backscatter. The results showed a statistically significant positive relationship between sponge density and temperature range, with the highest sponge densities occurring at depths of greatest temperature range. They showed a statistically significant positive relationship between sponge density and optical backscatter for long term and one short term seasonal deployment (Sep–Oct), but a weak negative relationship for the other short term mooring deployment (April-May). We conclude that sponge aggregations in the Faroe-Shetland Channel are associated with slope regions that are subjected to abrupt and pronounced changes in temperature due to intensified internal wave activity over the slope between depths of 400–600 and that lead to intensified near-bed currents and elevated resuspension of particulate. Our data provide empirical evidence of the relationship between internal wave processes and deep-sea sponge aggregations. These data modify current theory on drivers of deep sea sponge aggregation distribution, suggesting aggregations also occur directly within regions of internal wave breaking, rather than simply proximal to these regions

    Monitoring the health of the greater Mekong’s rivers

    Get PDF
    The methods used for biomonitoring can be sophisticated, producing highly accurate results, but can also be simplified for communities to use. In countries where budgets for biomonitoring are low, using community-based biomonitoring systems can effectively and cheaply tell us about a river’s health

    Environmental barriers to sociality in an obligate eusocial sweat bee

    Get PDF
    This is the final version of the article. Available from Springer Verlag via the DOI in this record.All data generated or analysed during this study are included in this published article and its supplementary materials.Understanding the ecological and environmental contexts in which eusociality can evolve is fundamental to elucidating its evolutionary origins. A sufficiently long active season is postulated to have been a key factor facilitating the transition to eusociality. Many primitively eusocial species exhibit an annual life cycle, which is thought to preclude the expression of eusociality where the active season is too short to produce successive worker and reproductive broods. However, few studies have attempted to test this idea experimentally. We investigated environmental constraints on the expression of eusociality in the obligate primitively eusocial sweat bee Lasioglossum malachurum, by transplanting nest foundresses from the south to the far north of the United Kingdom, far beyond the natural range of L. malachurum. We show that transplanted bees can exhibit eusociality, but that the short length of the season and harsher environmental conditions could preclude its successful expression. In one year, when foundresses were transplanted only after provisioning first brood (B1) offspring, workers emerged in the north and provisioned a second brood (B2) of reproductives. In another year, when foundresses were transplanted prior to B1 being provisioned, they were just as likely to initiate nesting and provisioned just as many B1 cells as foundresses in the south. However, the life cycle was delayed by approximately 7 weeks and nests suffered 100% B1 mortality. Our results suggest that short season length together with poor weather conditions represent an environmental barrier to the evolution and expression of eusociality in sweat bees.This work formed part of a studentship (1119965) awarded to PJD funded by the Natural Environment Research Council and the University of Sussex, supervised by JF

    Targeted Disruption of the Low-Affinity Leukemia Inhibitory Factor-Receptor Gene Causes Placental, Skeletal, Neural and Metabolic Defects and Results in Perinatal Death

    Get PDF
    The low-affinity receptor for leukemia inhibitory factor (LIFR)* interacts with gp130 to induce an intracellular signal cascade, The LIFR-gp130 heterodimer is implicated in the function of diverse systems, Normal placentation is disrupted in LIFR mutant animals, which leads to poor intrauterine nutrition but allows fetuses to continue to term. Fetal bone volume is reduced greater than three-fold and the number of osteoclasts is increased six-fold, resulting in severe osteopenia of perinatal bone. Astrocyte numbers are reduced in the spinal cord and brain stem. Late gestation fetal livers contain relatively high stores of glycogen, indicating a metabolic disorder. Hematologic and primordial germ cell compartments appear normal. Pleiotropic defects in the mutant animals preclude survival beyond the day of birth

    A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems

    Full text link
    In this paper we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware-experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results

    Use of the bootstrap in analysing cost data from cluster randomised trials: some simulation results

    Get PDF
    BACKGROUND: This work has investigated under what conditions confidence intervals around the differences in mean costs from a cluster RCT are suitable for estimation using a commonly used cluster-adjusted bootstrap in preference to methods that utilise the Huber-White robust estimator of variance. The bootstrap's main advantage is in dealing with skewed data, which often characterise patient costs. However, it is insufficiently well recognised that one method of adjusting the bootstrap to deal with clustered data is only valid in large samples. In particular, the requirement that the number of clusters randomised should be large would not be satisfied in many cluster RCTs performed to date. METHODS: The performances of confidence intervals for simple differences in mean costs utilising a robust (cluster-adjusted) standard error and from two cluster-adjusted bootstrap procedures were compared in terms of confidence interval coverage in a large number of simulations. Parameters varied included the intracluster correlation coefficient, the sample size and the distributions used to generate the data. RESULTS: The bootstrap's advantage in dealing with skewed data was found to be outweighed by its poor confidence interval coverage when the number of clusters was at the level frequently found in cluster RCTs in practice. Simulations showed that confidence intervals based on robust methods of standard error estimation achieved coverage rates between 93.5% and 94.8% for a 95% nominal level whereas those for the bootstrap ranged between 86.4% and 93.8%. CONCLUSION: In general, 24 clusters per treatment arm is probably the minimum number for which one would even begin to consider the bootstrap in preference to traditional robust methods, for the parameter combinations investigated here. At least this number of clusters and extremely skewed data would be necessary for the bootstrap to be considered in favour of the robust method. There is a need for further investigation of more complex bootstrap procedures if economic data from cluster RCTs are to be analysed appropriately

    Diabetes mellitus in dogs attending UK primary-care practices: frequency, risk factors and survival

    Get PDF
    Background: Diabetes mellitus (DM) is an important endocrine disorder of dogs. The objectives of this study were to estimate prevalence and incidence of DM in dogs, and to explore risk factors for DM and the survival of DM cases in primary-care clinics in the UK. Results: A case-control study nested in the cohort of dogs (n = 480,469) aged ≥3 years presenting at 430 VetCompass clinics was used to identify risk factors for DM, using multivariable logistic regression. Overall 409 new and 863 pre-existing DM cases (total 1272) were identified in 2016, giving an apparent annual prevalence of 0.26% (95% confidence interval (CI): 0.25–0.28%), and an annual incidence risk of 0.09% (95%CI: 0.08–0.09%) in dogs aged ≥3 years. Factors associated with increased odds for DM diagnosis were all age categories > 8 years, female entire dogs (odds ratio (OR): 3.03, 95% CI 1.69–5.44, p < 0.001) and male neutered dogs (OR: 1.99, 95% CI 1.18–3.34, p = 0.010) compared to male entire dogs, Border Terriers (OR: 3.37, 95% CI 1.04–10.98, p = 0.043) and West Highland White Terriers (WHWT) (OR: 2.88, 95% CI 1.49–5.56, p = 0.002) compared to crossbreeds. Dogs that had received previous glucocorticoid treatment (OR: 2.19, 95% CI 1.02–4.70, p = 0.044) and those with concurrent conditions (documented obese, pancreatitis, hyperadrenocorticism) also had increased odds for DM diagnosis. Cox regression modelling was used to evaluate factors associated with survival in the 409 incident DM cases in 2016. Increased hazard of death following diagnosis of DM was shown in dogs that were ≥ 10 years age, Cocker Spaniels (HR: 2.06, 95% CI 1.06–4.01, p = 0.034) compared to crossbreeds, had a blood glucose (BG) level at diagnosis > 40 mmol/L (HR: 2.73, 95% CI 1.35–5.55, p = 0.005) compared to < 20 mmol/L at diagnosis, or had received previous glucocorticoid treatment (HR: 1.86, 95% CI 1.21–2.86, p = 0.005). Dogs at reduced hazard of death included neutered dogs (HR: 0.58, 95% CI 0.42–0.79, p = 0.001), Border Collies (HR: 0.39, 95% CI 0.17–0.87, p = 0.022) and those starting insulin treatment (HR: 0.08 95% CI 0.05–0.12, p < 0.001). Conclusions: Certain breeds and concurrent health conditions are associated with an increased risk of DM. In addition to certain signalment factors, a high BG level at diagnosis and prior glucocorticoid treatment were adversely associated with survival of dogs with DM. Keywords: Diabetes mellitus, Risk factors, Survival, Case-control study, Benchmarking, VetCompas

    Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation

    Get PDF
    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family
    • …
    corecore