351 research outputs found
Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic.
Cu/Zn superoxide dismutase (SOD1) is a frontline antioxidant enzyme catalysing superoxide breakdown and is important for most forms of eukaryotic life. The evolution of aerobic respiration by mitochondria increased cellular production of superoxide, resulting in an increased reliance upon SOD1. Consistent with the importance of SOD1 for cellular health, many human diseases of the central nervous system involve perturbations in SOD1 biology. But far from providing a simple demonstration of how disease arises from SOD1 loss-of-function, attempts to elucidate pathways by which atypical SOD1 biology leads to neurodegeneration have revealed unexpectedly complex molecular characteristics delineating healthy, functional SOD1 protein from that which likely contributes to central nervous system disease. This review summarises current understanding of SOD1 biology from SOD1 genetics through to protein function and stability
Regular Physical Exercise Modulates Iron Homeostasis in the 5xFAD Mouse Model of Alzheimer’s Disease
Dysregulation of brain iron metabolism is one of the pathological features of aging and Alzheimer’s disease (AD), a neurodegenerative disease characterized by progressive memory loss and cognitive impairment. While physical inactivity is one of the risk factors for AD and regular exercise improves cognitive function and reduces pathology associated with AD, the underlying mechanisms remain unclear. The purpose of the study is to explore the effect of regular physical exercise on modulation of iron homeostasis in the brain and periphery of the 5xFAD mouse model of AD. By using inductively coupled plasma mass spectrometry and a variety of biochemical techniques, we measured total iron content and level of proteins essential in iron homeostasis in the brain and skeletal muscles of sedentary and exercised mice. Long-term voluntary running induced redistribution of iron resulted in altered iron metabolism and trafficking in the brain and increased iron content in skeletal muscle. Exercise reduced levels of cortical hepcidin, a key regulator of iron homeostasis, coupled with interleukin-6 (IL-6) decrease in cortex and plasma. We propose that regular exercise induces a reduction of hepcidin in the brain, possibly via the IL-6/STAT3/JAK1 pathway. These findings indicate that regular exercise modulates iron homeostasis in both wild-type and AD mice
The changing patterns of group politics in Britain
Two interpretations of ways in which group politics in Britain have presented challenges to democracy are reviewed: neo-corporatism or pluralistic stagnation and the rise of single issue interest groups. The disappearance of the first paradigm created a political space for the second to emerge. A three-phase model of group activity is developed: a phase centred around production interests, followed by the development of broadly based 'other regarding' groups, succeeded by fragmented, inner directed groups focusing on particular interests. Explanations of the decay of corporatism are reviewed. Single issue group activity has increased as party membership has declined and is facilitated by changes in traditional media and the development of the internet. Such groups can overload the policy-making process and frustrate depoliticisation. Debates about the constitution and governance have largely ignored these issues and there is need for a debate
Number and cost of claims linked to minor cervical trauma in Europe: results from the comparative study by CEA, AREDOC and CEREDOC
Comparative epidemiological study of minor cervical spine trauma (frequently referred to as whiplash injury) based on data from the Comité Européen des Assurances (CEA) gathered in ten European countries. To determine the incidence and expenditure (e.g., for assessment, treatment or claims) for minor cervical spine injury in the participating countries. Controversy still surrounds the basis on which symptoms following minor cervical spine trauma may develop. In particular, there is considerable disagreement with regard to a possible contribution of psychosocial factors in determining outcome. The role of compensation is also a source of constant debate. The method followed here is the comparison of the data from different areas of interest (e.g., incidence of minor cervical spine trauma, percentage of minor cervical spine trauma in relationship to the incidence of bodily trauma, costs for assessment or claims) from ten European countries. Considerable differences exist regarding the incidence of minor cervical spine trauma and related costs in participating countries. France and Finland have the lowest and Great Britain the highest incidence of minor cervical spine trauma. The number of claims following minor cervical spine trauma in Switzerland is around the European average; however, Switzerland has the highest expenditure per claim at an average cost of €35,000.00 compared to the European average of €9,000.00. Furthermore, the mandatory accident insurance statistics in Switzerland show very large differences between German-speaking and French- or Italian-speaking parts of the country. In the latter the costs for minor cervical spine trauma expanded more than doubled in the period from 1990 to 2002, whereas in the German-speaking part they rose by a factor of five. All the countries participating in the study have a high standard of medical care. The differences in claims frequency and costs must therefore reflect a social phenomenon based on the different cultural attitudes and medical approach to the problem including diagnosis. In Switzerland, therefore, new ways must be found to try to resolve the problem. The claims treatment model known as “Case Management” represents a new approach in which accelerated social and professional reintegration of the injured party is attempted. The CEA study emphasizes the fundamental role of medicine in that it postulates a clear division between the role of the attending physician and the medical expert. It also draws attention to the need to train medical professionals in the insurance business to the extent that they can interact adequately with insurance professionals. The results of this study indicate that the usefulness of the criterion of so-called typical clinical symptoms, which is at present applied by the courts to determine natural causality and has long been under debate, is inappropriate and should be replaced by objective assessment (e.g. accident and biomechanical analysis). In addition, the legal concept of adequate causality should be interpreted in the same way in both third party liability and social security law, which is currently not the case
A Dynamic Model of Interactions of Ca^(2+), Calmodulin, and Catalytic Subunits of Ca^(2+)/Calmodulin-Dependent Protein Kinase II
During the acquisition of memories, influx of Ca^(2+) into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca^(2+) influx during the first few seconds of activity is interpreted within the Ca^(2+)-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity, including Ca^(2+)/calmodulin-dependent protein kinase II (CaMKII), are regulated by calmodulin, a small protein that can bind up to 4 Ca^(2+) ions. As a first step toward clarifying how the Ca^(2+)-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca^(2+), calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca^(2+) play a significant role in activation of CaMKII in the physiological regime, supporting the notion that processing ofCa^(2+) signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca^(2+) is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca^(2+) transients arises from the kinetics of interaction of fluctuating Ca^(2+) with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic models of postsynaptic signal transduction during learning
Surfactant protein D modulates HIV infection of both T-cells and dendritic cells
Surfactant Protein D (SP-D) is an oligomerized C-type lectin molecule with immunomodulatory properties and involvement in lung surfactant homeostasis in the respiratory tract. SP-D binds to the enveloped viruses, influenza A virus and respiratory syncytial virus and inhibits their replication in vitro and in vivo. SP-D has been shown to bind to HIV via the HIV envelope protein gp120 and inhibit infectivity in vitro. Here we show that SP-D binds to different strains of HIV (BaL and IIIB) and the binding occurs at both pH 7.4 and 5.0 resembling physiological relevant pH values found in the body and the female urogenital tract, respectively. The binding of SP-D to HIV particles and gp120 was inhibited by the presence of several hexoses with mannose found to be the strongest inhibitor. Competition studies showed that soluble CD4 and CVN did not interfere with the interaction between SP-D and gp120. However, soluble recombinant DC-SIGN was shown to inhibit the binding between SP-D and gp120. SP-D agglutinated HIV and gp120 in a calcium dependent manner. SP-D inhibited the infectivity of HIV strains at both pH values of 7.4 and 5.0 in a concentration dependent manner. The inhibition of the infectivity was abolished by the presence of mannose. SP-D enhanced the binding of HIV to immature monocyte derived dendritic cells (iMDDCs) and was also found to enhance HIV capture and transfer to the T-cell like line PM1. These results suggest that SP-D can bind to and inhibit direct infection of T-cells by HIV but also enhance the transfer of infectious HIV particles from DCs to T-cells in vivo
Surfactant protein-D and pulmonary host defense
Surfactant protein-D (SP-D) participates in the innate response to inhaled microorganisms and organic antigens, and contributes to immune and inflammatory regulation within the lung. SP-D is synthesized and secreted by alveolar and bronchiolar epithelial cells, but is also expressed by epithelial cells lining various exocrine ducts and the mucosa of the gastrointestinal and genitourinary tracts. SP-D, a collagenous calcium-dependent lectin (or collectin), binds to surface glycoconjugates expressed by a wide variety of microorganisms, and to oligosaccharides associated with the surface of various complex organic antigens. SP-D also specifically interacts with glycoconjugates and other molecules expressed on the surface of macrophages, neutrophils, and lymphocytes. In addition, SP-D binds to specific surfactant-associated lipids and can influence the organization of lipid mixtures containing phosphatidylinositol in vitro. Consistent with these diverse in vitro activities is the observation that SP-D-deficient transgenic mice show abnormal accumulations of surfactant lipids, and respond abnormally to challenge with respiratory viruses and bacterial lipopolysaccharides. The phenotype of macrophages isolated from the lungs of SP-D-deficient mice is altered, and there is circumstantial evidence that abnormal oxidant metabolism and/or increased metalloproteinase expression contributes to the development of emphysema. The expression of SP-D is increased in response to many forms of lung injury, and deficient accumulation of appropriately oligomerized SP-D might contribute to the pathogenesis of a variety of human lung diseases
Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms
Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3′-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability
Endoscopic Saphenous harvesting with an Open CO2 System (ESOS) trial for coronary artery bypass grafting surgery: study protocol for a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>In coronary artery bypass grafting surgery, arterial conduits are preferred because of more favourable long-term patency and outcome. Anyway <it>the greater saphenous vein </it>continues to be the most commonly used bypass conduit. <it>Minimally invasive endoscopic saphenous vein harvesting </it>is increasingly being investigated in order to reduce the morbidity associated with conventional open vein harvesting, includes postoperative leg wound complications, pain and patient satisfaction. However, to date the short and the long-term benefits of the endoscopic technique remain controversial. This study provides an interesting opportunity to address this gap in the literature.</p> <p>Methods/Design</p> <p><b>Endoscopic Saphenous harvesting with an Open CO<sub>2 </sub>System </b>trial includes two parallel vein harvesting arms in coronary artery bypass grafting surgery. It is an interventional, single centre, prospective, randomized, safety/efficacy, cost/effectiveness study, in adult patients with elective planned and first isolated coronary artery disease. A simple size of 100 patients for each arm will be required to achieve 80% statistical power, with a significant level of 0.05, for detecting most of the formulated hypotheses. A six-weeks leg wound complications rate was assumed to be 20% in the conventional arm and less of 4% in the endoscopic arm. Previously quoted studies suggest a first-year vein-graft failure rate of about 20% with an annual occlusion rate of 1% to 2% in the first six years, with practically no difference between the endoscopic and conventional approaches. Similarly, the results on event-free survival rates for the two arms have barely a 2-3% gap. Assuming a 10% drop-out rate and a 5% cross-over rate, the goal is to enrol 230 patients from a single Italian cardiac surgery centre.</p> <p>Discussion</p> <p>The goal of this prospective randomized trial is to compare and to test improvement in wound healing, quality of life, safety/efficacy, cost-effectiveness, short and long-term outcomes and vein-graft patency after endoscopic open CO<sub>2 </sub>harvesting system versus conventional vein harvesting.</p> <p>The expected results are of high clinical relevance and will show the safety/efficacy or non-inferiority of one treatment approach in terms of vein harvesting for coronary artery bypass grafting surgery.</p> <p>Trial registration</p> <p>www.clinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01121341">NCT01121341</a>.</p
Habitat and Host Indicate Lineage Identity in Colletotrichum gloeosporioides s.l. from Wild and Agricultural Landscapes in North America
Understanding the factors that drive the evolution of pathogenic fungi is central to revealing the mechanisms of virulence and host preference, as well as developing effective disease control measures. Prerequisite to these pursuits is the accurate delimitation of species boundaries. Colletotrichum gloeosporioides s.l. is a species complex of plant pathogens and endophytic fungi for which reliable species recognition has only recently become possible through a multi-locus phylogenetic approach. By adopting an intensive regional sampling strategy encompassing multiple hosts within and beyond agricultural zones associated with cranberry (Vaccinium macrocarpon Aiton), we have integrated North America strains of Colletotrichum gloeosporioides s.l. from these habitats into a broader phylogenetic framework. We delimit species on the basis of genealogical concordance phylogenetic species recognition (GCPSR) and quantitatively assess the monophyly of delimited species at each of four nuclear loci and in the combined data set with the genealogical sorting index (gsi). Our analysis resolved two principal lineages within the species complex. Strains isolated from cranberry and sympatric host plants are distributed across both of these lineages and belong to seven distinct species or terminal clades. Strains isolated from V. macrocarpon in commercial cranberry beds belong to four species, three of which are described here as new. Another species, C. rhexiae Ellis & Everh., is epitypified. Intensive regional sampling has revealed a combination of factors, including the host species from which a strain has been isolated, the host organ of origin, and the habitat of the host species, as useful indicators of species identity in the sampled regions. We have identified three broadly distributed temperate species, C. fructivorum, C. rhexiae, and C. nupharicola, that could be useful for understanding the microevolutionary forces that may lead to species divergence in this important complex of endophytes and plant pathogens
- …