25 research outputs found

    Genetic variation for tuber mineral concentrations in accessions of the Commonwealth Potato Collection

    Get PDF
    The variation in tuber mineral concentrations amongst accessions of wild tuber-bearing Solanum species in the Commonwealth Potato Collection (CPC) was evaluated under greenhouse conditions. Selected CPC accessions, representing the eco-geographical distribution of wild potatoes, were grown to maturity in peat-based compost under controlled conditions. Tubers from five plants of each accession were harvested, bulked and their mineral composition analysed. Among the germplasm investigated, there was a greater range in tuber concentrations of some elements of nutritional significance to both plants and animals, such as (Ca, Fe and Zn; 6.7, 3.6, and 4.5-fold respectively) than others, such as (K, P and S; all <3-fold). Significant positive correlations were found between mean altitude of the species' range and tuber P, K, Cu and Mg concentrations. The amount of diversity observed in the CPC collection indicates the existence of wide differences in tuber mineral accumulation among different potato accessions. This might be useful in breeding for nutritional improvement of potato tubers

    Id genes are essential for early heart formation

    Get PDF
    Deciphering the fundamental mechanisms controlling cardiac specification is critical for our understanding of how heart formation is initiated during embryonic development and for applying stem cell biology to regenerative medicine and disease modeling. Using systematic and unbiased functional screening approaches, we discovered that the Id family of helix–loop–helix proteins is both necessary and sufficient to direct cardiac mesoderm formation in frog embryos and human embryonic stem cells. Mechanistically, Id proteins specify cardiac cell fate by repressing two inhibitors of cardiogenic mesoderm formation—Tcf3 and Foxa2—and activating inducers Evx1, Grrp1, and Mesp1. Most importantly, CRISPR/Cas9-mediated ablation of the entire Id (Id1–4) family in mouse embryos leads to failure of anterior cardiac progenitor specification and the development of heartless embryos. Thus, Id proteins play a central and evolutionarily conserved role during heart formation and provide a novel means to efficiently produce cardiovascular progenitors for regenerative medicine and drug discovery applications

    An Information Theory Approach to Hypothesis Testing in Criminological Research

    Full text link
    Background: This research demonstrates how the Akaike information criterion (AIC) can be an alternative to null hypothesis significance testing in selecting best fitting models. It presents an example to illustrate how AIC can be used in this way. Methods: Using data from Milwaukee, Wisconsin, we test models of place-based predictor variables on street robbery and commercial robbery. We build models to balance explanatory power and parsimony. Measures include the presence of different kinds of businesses, together with selected age groups and social disadvantage. Results: Models including place-based measures of land use emerged as the best models among the set of tested models. These were superior to models that included measures of age and socioeconomic status. The best models for commercial and street robbery include three measures of ordinary businesses, liquor stores, and spatial lag. Conclusions: Models based on information theory offer a useful alternative to significance testing when a strong theoretical framework guides the selection of model sets. Theoretically relevant ‘ordinary businesses’ have a greater influence on robbery than socioeconomic variables and most measures of discretionary businesses

    miRNAs that induce human cardiomyocyte proliferation converge on the hippo pathway

    No full text
    Understanding the mechanisms that control human cardiomyocyte proliferation might be applicable to regenerative medicine. We screened a whole genome collection of human miRNAs, identifying 96 to be capable of increasing proliferation (DNA synthesis and cytokinesis) of human iPSC-derived cardiomyocytes. Chemical screening and computational approaches indicated that most of these miRNAs (67) target different components of the Hippo pathway and that their activity depends on the nuclear translocation of the Hippo transcriptional effector YAP. 53 of the 67 miRNAs are present in human iPSC cardiomyocytes, yet anti-miRNA screening revealed that none are individually essential for basal proliferation of hiPSC cardiomyocytes despite the importance of YAP for proliferation. We propose a model in which multiple endogenous miRNAs redundantly suppress Hippo signaling to sustain the cell cycle of immature cardiomyocytes

    Epicardial FSTL1 reconstitution regenerates the adult mammalian heart

    Get PDF
    The elucidation of factors that activate the regeneration of the adult mammalian heart is of major scientific and therapeutic importance. Here we found that epicardial cells contain a potent cardiogenic activity identified as follistatin-like 1 (Fstl1). Epicardial Fstl1 declines following myocardial infarction and is replaced by myocardial expression. Myocardial Fstl1 does not promote regeneration, either basally or upon transgenic overexpression. Application of the human Fstl1 protein (FSTL1) via an epicardial patch stimulates cell cycle entry and division of pre-existing cardiomyocytes, improving cardiac function and survival in mouse and swine models of myocardial infarction. The data suggest that the loss of epicardial FSTL1 is a maladaptive response to injury, and that its restoration would be an effective way to reverse myocardial death and remodelling following myocardial infarction in humans

    Cardiac commitment of primate embryonic stem cells

    No full text
    International audiencePrimate nonhuman and human embryonic stem (ES) cells provide a powerful model of early cardiogenesis. Furthermore, engineering of cardiac progenitors or cardiomyocytes from ES cells offers a tool for drug screening in toxicology or to search for molecules to improve and scale up the process of cardiac differentiation using high-throughput screening technology, as well as a source of cell therapy of heart failure. Spontaneous differentiation of ES cells into cardiomyocytes is however limited. Herein, we describe a simple protocol to commit both rhesus and human ES cells toward a cardiac lineage and to sort out early cardiac progenitors. Primate ES cells are challenged for 4 d with the cardiogenic morphogen bone morphogenetic protein 2 (BMP2) and sorted out using anti-SSEA-1 antibody-conjugated magnetic beads. Cardiac progenitor cells can be generated and isolated in 4 d using this protocol
    corecore