83 research outputs found

    Primeiro registro de epidemias causadas pelo vírus Oropouche nos Estados do Maranhão e Goiás, Brasil

    Get PDF
    Os autores descrevem a ocorrência de epidemias causadas pelo vírus Oropouche (ORO) nos Estados do Maranhão (MA) e Goiás (GO) em 1988. 36 amostras de vírus foram obtidas a partir da inoculação do sangue de 120 pacientes em camundongos recém nascidos. A doença foi caracterizada por febre, cefaléia, dores musculares, articulares, fotofobia, dor retro ocular, náuseas e tontura. 128 das 197 pessoas examinadas em Porto Franco, MA, tinham anticorpos inibidores da hemaglutinação (IH) para o agente e, em 106 foram detectados anticorpos IgM por MAC ELISA. Todos os grupos etários foram infectados, embora a incidência tenha sido mais elevada entre aqueles com 10 a 19 anos de idade. Quanto ao sexo, a infecção ocorreu igualmente em ambos os sexos. Recorrência dos sintomas foi observada em 56% dos casos positivos estudados. A inoculação em camundongos Swiss recém nascidos de 3.624 Culicoides paraensis (Ceratopogonidae) e 1.970 Culex (Culex) quinquefasciatus (Culicidae), coletados em Porto Franco-MA, resultou em um único isolamento do vírus ORO a partir dos Culicoides. Essa é a primeira descrição de casos confirmados de infecção pelo vírus Oropouche nos Estados do Maranhão e Goiás, Brasil

    Assessment of an exhaust thermoelectric generator incorporating thermal control applied to a heavy duty vehicle

    Get PDF
    The road transport industry faces the need to develop its fleet for lower energy consumption, pollutants and CO2 emissions. Waste heat recovery systems with Thermoelectric Generators (TEGs) can directly convert the exhaust heat into electric energy, aiding the electrical needs of the vehicle, thus reducing its dependency on fuel energy. The present work assesses the optimisation and evaluation of a temperature-controlled thermoelectric generator (TCTG) concept to be used in a commercial heavy-duty vehicle (HDV). The system consists of a heat exchanger with wavy fins (WFs) embedded in an aluminium matrix along with vapour chambers (VCs), machined directly into the matrix, that grant the thermal control based on the spreading of local excess heat by phase change, as proposed by the authors in previous publications and patents. The TCTG concept behaviour was analysed under realistic driving conditions. An HDV with a 16 L Diesel engine was simulated in AVL Cruise to obtain the exhaust gas temperature and mass flow rate for each point of two cycle runs. A model proposed in previous publications was adapted to the new fin geometry and vapour chamber configuration and used the AVL Cruise data as input. It was possible to predict the thermal and thermoelectric performance of the TCTG along the corresponding driving cycles. The developed system proved to have a good capacity for applications with highly variable thermal loads since it was able to uncouple the maximisation of heat absorption from the regulation of the thermal level at the hot face of the TEG modules, avoiding both thermal dilution and overheating. This was achieved by the controlled phase change temperature of the heat spreader, that would ensure the spreading of the excess heat from overheated to underheated areas of the generator instead of wasting excess heat. A maximum average electrical production of 2.4 kW was predicted, which resulted in fuel savings of about 2% and CO2 emissions reduction of around 37 g/km.This article was partially supported by projects COOLSPOT PTDC/EME-TED/7801/2020, UIDB/00481/2020 and UIDP/00481/2020 (Centre for Mechanical Technology and Automation—TEMA) and UIDB/04077/2020 (MEchanical Engineering and Resource Sustainability Center—MEtRICs)— Fundação para a Ciência e a Tecnologia (FCT); CENTRO-01-0145-FEDER-022083 (Centro2020), Norte2020, Compete2020, under the PORTUGAL 2020 Partnership Agreement, through Portuguese national funds of FCT/MCTES (PIDDAC) and the European Regional Development Fund

    Complex fluid flow in microchannels and heat pipes with enhanced surfaces for advanced heat conversion and recovery systems

    Get PDF
    This paper addresses a multiscale approach for heat recovery systems, used in two distinct applications. In both applications, a microscale approach is used (microchannel heat sinks and heat pipes) for macroscale applications (cooling of a photovoltaic—PV cell), and the thermal energy of exhaust gases of an internal combustion engine is used for thermoelectric generators with variable conductance heat pipes. Several experimental techniques are combined such as visualization, thermography with high spatial and temporal resolution, and the characterization of the flow hydrodynamics, such as the friction losses. The analysis performed evidences the relevance of looking at the physics of the observed phenomena to optimize the heat sink geometry. For instance, the results based on the dissipated heat flux and the convective heat transfer coefficients obtained in the tests of the microchannel-based heat sinks for cooling applications in PV cells show an improvement in the dissipated power at the expense of controlled pumping power, for the best performing geometries. Simple geometries based on these results were then used as inputs in a genetic algorithm to produce the optimized geometries. In both applications, the analysis performed evidences the potential of using two-phase flows. However, instabilities at the microscale must be accurately addressed to take advantage of liquid phase change. In this context, the use of enhanced interfaces may significantly contribute to the resolution of the instability issues as they are able to control bubble dynamics. Such an approach is also addressed here.Authors acknowledge to Fundação para a Ciência e a Tecnologia¸ FCT and PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund, for partially financing this project through projects PTDC/EME-TED/7801/2020, JICAM/0003/2017, UIDB/00481/2020, UIDP/00481/2020, and CENTRO-01-0145-FEDER-022083 (Centro2020) and for funding the scholarship of Pedro Pontes, ref. SFRH/BD/149286/2019

    Cryptosporidium Spp. And Giardia Spp. In Feces And Water And The Associated Exposure Factors On Dairy Farms

    Get PDF
    The aims of this study were to verify the prevalence of Cryptosporidium spp. and Giardia spp. in animal feces and drinking water on dairy farms and to identify a possible relation between the exposure factors and the presence of these parasites. Fecal samples from cattle and humans and water samples were collected on dairy farms in Paraná, Brazil. Analysis of (oo)cysts in the feces was performed by the modified Ziehl-Neelsen staining and centrifugal flotation in zinc sulfate. Test-positive samples were subjected to nested PCR amplification of the 18SSU ribosomal RNA gene for identification of Cryptosporidium and Giardia and of the gp60 gene for subtyping of Cryptosporidium. Microbiological analysis of water was carried out by the multiple-tube method and by means of a chromogenic substrate, and parasitological analysis was performed on 31 samples by direct immunofluorescence and nested PCR of the genes mentioned above. Identification of the species of Cryptosporidium was performed by sequencing and PCR with analysis of restriction fragment length polymorphisms. The prevalence of Giardia and Cryptosporidium was higher in calves than in adults. Among the samples of cattle feces, Cryptosporidium parvum was identified in 41 (64%), C. ryanae in eight (12.5%), C. bovis in four (6.3%), C. andersoni in five (7.8%), and a mixed infection in 20 samples (31.3%). These parasites were not identified in the samples of human feces. Thermotolerant coliform bacteria were identified in 25 samples of water (45.5%). Giardia duodenalis and C. parvum were identified in three water samples. The gp60 gene analysis of C. parvum isolates revealed the presence of two strains (IIaA20G1R1 and IIaA17G2R2) in the fecal samples and one (IIaA17G2R1) in the water samples. The presence of coliforms was associated with the water source, structure and degradation of springs, rain, and turbidity. The prevalence of protozoa was higher in calves up to six months of age. C. parvum and G. duodenalis were identified in the water of dairy farms, as were thermotolerant coliforms; these findings point to the need for guidance on handling of animals, preservation of water sources, and water treatment. © 2017 Toledo et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.12
    • …
    corecore