168 research outputs found

    Centrosome defects and genetic instability in malignant tumors

    Get PDF
    Genetic instability is a common feature of many human cancers. This condition is frequently characterized by an abnormal number of chromosomes, although little is known about the mechanism that generates this altered genetic state. One possibility is that chromosomes are missegregated during mitosis due to the assembly of dysfunctional mitotic spindles. Because centrosomes are involved in spindle assembly, they could contribute to chromosome missegregation through the organization of aberrant spindles. As an initial test of this idea, we examined malignant tumors for centrosome abnormalities using antibodies to the centrosome protein pericentrin. We found that centrosomes in nearly all tumors and tumor-derived cell lines were atypical in shape, size, and composition and were often present in multiple copies. In addition, virtually all pericentrin-staining structures in tumor cells nucleated microtubules, and they participated in formation of disorganized mitotic spindles, upon which chromosomes were missegregated. All tumor cell lines had both centrosome defects and abnormal chromosome numbers, whereas neither was observed in nontumor cells. These results indicate that centrosome defects are a common feature of malignant tumors and suggest that they may contribute to genetic instability in cancer

    Centrosome clustering and Cyclin D1 gene amplification in double minutes are common events in chromosomal unstable bladder tumors

    Get PDF
    Background: Aneuploidy, centrosome abnormalities and gene amplification are hallmarks of chromosome instability (CIN) in cancer. Yet there are no studies of the in vivo behavior of these phenomena within the same bladder tumor. Methods: Twenty-one paraffin-embedded bladder tumors were analyzed by conventional comparative genome hybridization and fluorescence in situ hybridization (FISH) with a cyclin D1 gene (CCND1)/centromere 11 dual-color probe. Immunofluorescent staining of α, β and γ tubulin was also performed. Results: Based on the CIN index, defined as the percentage of cells not displaying the modal number for chromosome 11, tumors were classified as CIN-negative and CIN-positive. Fourteen out of 21 tumors were considered CIN-positive. All T1G3 tumors were included in the CIN-positive group whereas the majority of Ta samples were classified as CIN-negative tumors. Centrosome clustering was observed in six out of 12 CIN-positive tumors analyzed. CCND1 amplification in homogeneously staining regions was present in six out of 14 CIN-positive tumors; three of them also showed amplification of this gene in double minutes. Conclusions: Complex in vivo behavior of CCND1 amplicon in bladder tumor cells has been demonstrated by accurate FISH analysis on paraffin-embedded tumors. Positive correlation between high heterogeneity, centrosome abnormalities and CCND1 amplification was found in T1G3 bladder carcinomas. This is the first study to provide insights into the coexistence of CCND1 amplification in homogeneously staining regions and double minutes in primary bladder tumors. It is noteworthy that those patients whose tumors showed double minutes had a significantly shorter overall survival rate (p < 0.001)

    Aurora-A/STK15/BTAK overexpression induces centrosome amplification, chromosomal instability, and transformation in human urothelial cells

    Get PDF
    Aurora-A/STK15/BTAK kinase encoding gene, located on chromosome 20q13, is frequently amplified and overexpressed in human cancers. Sen et al. previously demonstrated that Aurora-A amplification and overexpression are associated with aneuploidy and clinically aggressive bladder cancer (J Natl Cancer Inst (2002) 94, 1320-1329). To examine if this association is the direct result of Aurora-A gene amplification and overexpression, an immortalized human urothelial cell line (SV-HUC) was infected with an adenoviral Aurora-A-green fluorescent protein (Ad-Aurora-A-GFP) fusion construct inducing ectopic expression of the resulting fusion protein. Controls included mock-infected and adenoviral-GFP infected cells. Ectopic expression of transduced Aurora-A did not alter the doubling time of the SV-HUC cells but significantly increased the number of cells with multiple centrosomes displaying aneuploidy and increased colony formation in soft agar. This is the first report demonstrating that overexpression of Aurora-A induces centrosome anomalies together with chromosomal instability and malignant transformation-associated phenotypic changes in immortalized human urothelial cells, thus supporting the hypothesis that this gene plays an important role in the development of aggressive bladder cancer

    Microarray comparative genomic hybridization detection of chromosomal imbalances in uterine cervix carcinoma

    Get PDF
    BACKGROUND: Chromosomal Comparative Genomic Hybridization (CGH) has been applied to all stages of cervical carcinoma progression, defining a specific pattern of chromosomal imbalances in this tumor. However, given its limited spatial resolution, chromosomal CGH has offered only general information regarding the possible genetic targets of DNA copy number changes. METHODS: In order to further define specific DNA copy number changes in cervical cancer, we analyzed 20 cervical samples (3 pre-malignant lesions, 10 invasive tumors, and 7 cell lines), using the GenoSensor microarray CGH system to define particular genetic targets that suffer copy number changes. RESULTS: The most common DNA gains detected by array CGH in the invasive samples were located at the RBP1-RBP2 (3q21-q22) genes, the sub-telomeric clone C84C11/T3 (5ptel), D5S23 (5p15.2) and the DAB2 gene (5p13) in 58.8% of the samples. The most common losses were found at the FHIT gene (3p14.2) in 47% of the samples, followed by deletions at D8S504 (8p23.3), CTDP1-SHGC- 145820 (18qtel), KIT (4q11-q12), D1S427-FAF1 (1p32.3), D9S325 (9qtel), EIF4E (eukaryotic translation initiation factor 4E, 4q24), RB1 (13q14), and DXS7132 (Xq12) present in 5/17 (29.4%) of the samples. CONCLUSION: Our results confirm the presence of a specific pattern of chromosomal imbalances in cervical carcinoma and define specific targets that are suffering DNA copy number changes in this neoplasm

    Emotional Speech Perception Unfolding in Time: The Role of the Basal Ganglia

    Get PDF
    The basal ganglia (BG) have repeatedly been linked to emotional speech processing in studies involving patients with neurodegenerative and structural changes of the BG. However, the majority of previous studies did not consider that (i) emotional speech processing entails multiple processing steps, and the possibility that (ii) the BG may engage in one rather than the other of these processing steps. In the present study we investigate three different stages of emotional speech processing (emotional salience detection, meaning-related processing, and identification) in the same patient group to verify whether lesions to the BG affect these stages in a qualitatively different manner. Specifically, we explore early implicit emotional speech processing (probe verification) in an ERP experiment followed by an explicit behavioral emotional recognition task. In both experiments, participants listened to emotional sentences expressing one of four emotions (anger, fear, disgust, happiness) or neutral sentences. In line with previous evidence patients and healthy controls show differentiation of emotional and neutral sentences in the P200 component (emotional salience detection) and a following negative-going brain wave (meaning-related processing). However, the behavioral recognition (identification stage) of emotional sentences was impaired in BG patients, but not in healthy controls. The current data provide further support that the BG are involved in late, explicit rather than early emotional speech processing stages

    Multipolar Spindle Pole Coalescence Is a Major Source of Kinetochore Mis-Attachment and Chromosome Mis-Segregation in Cancer Cells

    Get PDF
    Many cancer cells display a CIN (Chromosome Instability) phenotype, by which they exhibit high rates of chromosome loss or gain at each cell cycle. Over the years, a number of different mechanisms, including mitotic spindle multipolarity, cytokinesis failure, and merotelic kinetochore orientation, have been proposed as causes of CIN. However, a comprehensive theory of how CIN is perpetuated is still lacking. We used CIN colorectal cancer cells as a model system to investigate the possible cellular mechanism(s) underlying CIN. We found that CIN cells frequently assembled multipolar spindles in early mitosis. However, multipolar anaphase cells were very rare, and live-cell experiments showed that almost all CIN cells divided in a bipolar fashion. Moreover, fixed-cell analysis showed high frequencies of merotelically attached lagging chromosomes in bipolar anaphase CIN cells, and higher frequencies of merotelic attachments in multipolar vs. bipolar prometaphases. Finally, we found that multipolar CIN prometaphases typically possessed γ-tubulin at all spindle poles, and that a significant fraction of bipolar metaphase/early anaphase CIN cells possessed more than one centrosome at a single spindle pole. Taken together, our data suggest a model by which merotelic kinetochore attachments can easily be established in multipolar prometaphases. Most of these multipolar prometaphase cells would then bi-polarize before anaphase onset, and the residual merotelic attachments would produce chromosome mis-segregation due to anaphase lagging chromosomes. We propose this spindle pole coalescence mechanism as a major contributor to chromosome instability in cancer cells

    PP2A inactivation is a crucial step in triggering apoptin-induced tumor-selective cell killing

    Get PDF
    Apoptin (apoptosis-inducing protein) harbors tumor-selective characteristics making it a potential safe and effective anticancer agent. Apoptin becomes phosphorylated and induces apoptosis in a large panel of human tumor but not normal cells. Here, we used an in vitro oncogenic transformation assay to explore minimal cellular factors required for the activation of apoptin. Flag-apoptin was introduced into normal fibroblasts together with the transforming SV40 large T antigen (SV40 LT) and SV40 small t antigen (SV40 ST) antigens. We found that nuclear expression of SV40 ST in normal cells was sufficient to induce phosphorylation of apoptin. Mutational analysis showed that mutations disrupting the binding of ST to protein phosphatase 2A (PP2A) counteracted this effect. Knockdown of the ST-interacting PP2A–B56γ subunit in normal fibroblasts mimicked the effect of nuclear ST expression, resulting in induction of apoptin phosphorylation. The same effect was observed upon downregulation of the PP2A–B56δ subunit, which is targeted by protein kinase A (PKA). Apoptin interacts with the PKA-associating protein BCA3/AKIP1, and inhibition of PKA in tumor cells by treatment with H89 increased the phosphorylation of apoptin, whereas the PKA activator cAMP partially reduced it. We infer that inactivation of PP2A, in particular, of the B56γ and B56δ subunits is a crucial step in triggering apoptin-induced tumor-selective cell death

    Downregulation of the anaphase-promoting complex (APC)7 in invasive ductal carcinomas of the breast and its clinicopathologic relationships

    Get PDF
    INTRODUCTION: The anaphase-promoting complex (APC) is a multiprotein complex with E3 ubiquitin ligase activity, which is required for the ubiquitination of securin and cyclin-B. Moreover, the mitotic spindle checkpoint is activated if APC activation is prevented. In addition, several APC-targeting molecules such as securin, polo-like kinase, aurora kinase, and SnoN have been reported to be oncogenes. Therefore, dysregulation of APC may be associated with tumorigenesis. However, the clinical significance and the involvement of APC in tumorigenesis have not been investigated. METHODS: The expression of APC7 was immunohistochemically investigated in 108 invasive ductal carcinomas of the breast and its relationship with clinicopathologic parameters was examined. The expression of APC7 was defined as positive when the summed scores of staining intensities (0 to 3+) and stained proportions (0 to 3+) exceeded 3+. RESULTS: Positive APC7 expression was less frequent than its negative expression when histologic (P = 0.009) or nuclear grade (P = 0.009), or mitotic number (P = 0.0016) was elevated. The frequency of APC7 negative expression was higher in high Ki-67 or aneuploid groups than in low Ki-67 or diploid groups. CONCLUSION: These data show that loss of APC7 expression is more common in breast carcinoma cases with poor prognostic parameters or malignant characteristics. They therefore suggest that dysregulation of APC activity, possibly through downregulation of APC7, may be associated with tumorigenesis in breast cancer

    Blood lead, cadmium and mercury among children from urban, industrial and rural areas of Fez Boulemane Region (Morocco): Relevant factors and early renal effects

    Full text link
    Objectives: To describe blood lead (Pb-B), cadmium (Cd-B) and mercury (Hg-B) levels in children living in urban, industrial and rural areas in Fez city (north of Morocco) and to identify the determinants and some renal effects of exposure. Material and Methods: The study was conducted from June 2007 to January 2008 in 209 school children (113 girls, 96 boys), aged 6-12 years, from urban, industrial and rural areas in Fez city. Interview and questionnaires data were obtained. Blood and urinary samples were analyzed. Results: The mean of blood lead levels (Pb-B) in our population was 55.53 μg/l (range: 7.5-231.1 μg/l). Children from the urban area had higher blood lead levels (BLLs) mean (82.36 μg/l) than children from industrial and rural areas (48.23 and 35.99 μg/l, respectively); with no significant difference between boys and girls. BLLs were associated with traffic intensity, passive smoking and infancy in the urban area. The mean of blood cadmium levels (BCLs) was 0.22 μg/l (range: 0.06-0.68 μg/l), with no difference between various areas. Rural boys had higher BCLs mean than rural girls, but no gender influence was noticed in the other areas. BCLs were associated with the number of cigarettes smoked at children's homes. The blood mercury levels (BMLs) mean was 0.49 μg/l (range: 0.01-5.31 μg/l). The BMLs mean was higher in urban and industrial areas than in the rural area with no gender-related difference. BMLs were associated with amalgam fillings and infancy in the urban area. About 8% of the children had BLLs ≥ 100 μg/l particularly in the urban area, microalbuminuria and a decrease in height were noticed in girls from the inner city of Fez and that can be related to high BLLs (89.45 μg/l). Conclusions: There is a need to control and regulate potential sources of contamination by these trace elements in children; particularly for lead

    Nuclear envelope structural defects cause chromosomal numerical instability and aneuploidy in ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite our substantial understanding of molecular mechanisms and gene mutations involved in cancer, the technical approaches for diagnosis and prognosis of cancer are limited. In routine clinical diagnosis of cancer, the procedure is very basic: nuclear morphology is used as a common assessment of the degree of malignancy, and hence acts as a prognostic and predictive indicator of the disease. Furthermore, though the atypical nuclear morphology of cancer cells is believed to be a consequence of oncogenic signaling, the molecular basis remains unclear. Another common characteristic of human cancer is aneuploidy, but the causes and its role in carcinogenesis are not well established.</p> <p>Methods</p> <p>We investigated the expression of the nuclear envelope proteins lamin A/C in ovarian cancer by immunohistochemistry and studied the consequence of lamin A/C suppression using siRNA in primary human ovarian surface epithelial cells in culture. We used immunofluorescence microscopy to analyze nuclear morphology, flow cytometry to analyze cellular DNA content, and fluorescence <it>in situ </it>hybridization to examine cell ploidy of the lamin A/C-suppressed cells.</p> <p>Results</p> <p>We found that nuclear lamina proteins lamin A/C are often absent (47%) in ovarian cancer cells and tissues. Even in lamin A/C-positive ovarian cancer, the expression is heterogeneous within the population of tumor cells. In most cancer cell lines, a significant fraction of the lamin A/C-negative population was observed to intermix with the lamin A/C-positive cells. Down regulation of lamin A/C in non-cancerous primary ovarian surface epithelial cells led to morphological deformation and development of aneuploidy. The aneuploid cells became growth retarded due to a p53-dependent induction of the cell cycle inhibitor p21.</p> <p>Conclusions</p> <p>We conclude that the loss of nuclear envelope structural proteins, such as lamin A/C, may underlie two of the hallmarks of cancer - aberrations in nuclear morphology and aneuploidy.</p
    corecore