678 research outputs found

    Silicon photomultiplier arrays - a novel photon detector for a high resolution tracker produced at FBK-irst, Italy

    Full text link
    A silicon photomultiplier (SiPM) array has been developed at FBK-irst having 32 channels and a dimension of 8.0 x 1.1 mm^2. Each 250 um wide channel is subdivided into 5 x 22 rectangularly arranged pixels. These sensors are developed to read out a modular high resolution scintillating fiber tracker. Key properties like breakdown voltage, gain and photon detection efficiency (PDE) are found to be homogeneous over all 32 channels of an SiPM array. This could make scintillating fiber trackers with SiPM array readout a promising alternative to available tracker technologies, if noise properties and the PDE are improved

    A Scintillating Fiber Tracker With SiPM Readout

    Full text link
    We present a prototype for the first tracking detector consisting of 250 micron thin scintillating fibers and silicon photomultiplier (SiPM) arrays. The detector has a modular design, each module consists of a mechanical support structure of 10mm Rohacell foam between two 100 micron thin carbon fiber skins. Five layers of scintillating fibers are glued to both top and bottom of the support structure. SiPM arrays with a channel pitch of 250 micron are placed in front of the fibers. We show the results of the first module prototype using multiclad fibers of types Bicron BCF-20 and Kuraray SCSF-81M that were read out by novel 32-channel SiPM arrays from FBK-irst/INFN Perugia as well as 32-channel SiPM arrays produced by Hamamatsu. A spatial resolution of 88 micron +/- 6 micron at an average yield of 10 detected photons per minimal ionizig particle has been achieved.Comment: 5 pages, 7 figures, submitted as proceedings to the 11th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD08

    Influence of the Leakage Current on the Performance of Large Area Silicon Drift Detectors

    Get PDF
    In this paper we investigate the influence of the leakage current on the performance of Silicon Drift Detectors. First, analytical considerations are given in order to highlight the problems, specific for this type of detector, that emerge with leakage current. Then the obtained results are compared with the data of laboratory measurements. Aiming at a mass production of SDDs for the Inner Tracking System of the ALICE experiment at LHC we propose a simple and fast measurement for a preliminary selection before passing to a detailed acceptance test

    Radiation Damage Studies of Silicon Photomultipliers

    Full text link
    We report on the measurement of the radiation hardness of silicon photomultipliers (SiPMs) manufactured by Fondazione Bruno Kessler in Italy (1 mm2^2 and 6.2 mm2^2), Center of Perspective Technology and Apparatus in Russia (1 mm2^2 and 4.4 mm2^2), and Hamamatsu Corporation in Japan (1 mm2^2). The SiPMs were irradiated using a beam of 212 MeV protons at Massachusetts General Hospital, receiving fluences of up to 3Ă—10103 \times 10^{10} protons per cm2^2 with the SiPMs at operating voltage. Leakage currents were read continuously during the irradiation. The delivery of the protons was paused periodically to record scope traces in response to calibrated light pulses to monitor the gains, photon detection efficiencies, and dark counts of the SiPMs. The leakage current and dark noise are found to increase with fluence. Te leakage current is found to be proportional to the mean square deviation of the noise distribution, indicating the dark counts are due to increased random individual pixel activation, while SiPMs remain fully functional as photon detectors. The SiPMs are found to anneal at room temperature with a reduction in the leakage current by a factor of 2 in about 100 days.Comment: 35 pages, 25 figure

    SiPM and front-end electronics development for Cherenkov light detection

    Full text link
    The Italian Institute of Nuclear Physics (INFN) is involved in the development of a demonstrator for a SiPM-based camera for the Cherenkov Telescope Array (CTA) experiment, with a pixel size of 6Ă—\times6 mm2^2. The camera houses about two thousands electronics channels and is both light and compact. In this framework, a R&D program for the development of SiPMs suitable for Cherenkov light detection (so called NUV SiPMs) is ongoing. Different photosensors have been produced at Fondazione Bruno Kessler (FBK), with different micro-cell dimensions and fill factors, in different geometrical arrangements. At the same time, INFN is developing front-end electronics based on the waveform sampling technique optimized for the new NUV SiPM. Measurements on 1Ă—\times1 mm2^2, 3Ă—\times3 mm2^2, and 6Ă—\times6 mm2^2 NUV SiPMs coupled to the front-end electronics are presentedComment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Measurements and tests on FBK silicon sensors with an optimized electronic design for a CTA camera

    Full text link
    In October 2013, the Italian Ministry approved the funding of a Research & Development (R&D) study, within the "Progetto Premiale TElescopi CHErenkov made in Italy (TECHE)", devoted to the development of a demonstrator for a camera for the Cherenkov Telescope Array (CTA) consortium. The demonstrator consists of a sensor plane based on the Silicon Photomultiplier (SiPM) technology and on an electronics designed for signal sampling. Preliminary tests on a matrix of sensors produced by the Fondazione Bruno Kessler (FBK-Trento, Italy) and on electronic prototypes produced by SITAEL S.p.A. will be presented. In particular, we used different designs of the electronics in order to optimize the output signals in terms of tail cancellation. This is crucial for applications where a high background is expected, as for the CTA experiment.Comment: 5 pages, 6 figures; Proceedings of the 10th Workshop on Science with the New Generation of High-Energy Gamma-ray experiments (SciNeGHE) - PoS(Scineghe2014)00

    NUV-HD SiPMs with metal-filled trenches

    Get PDF
    In this paper we present the performance of a new SiPM that is sensitive to blue light and features narrow metal-filled trenches placed in the area around the single-photon avalanche diodes (SPADs) that allow an almost complete suppression the internal optical crosstalk. In particular, we show the benefits of this technological upgrade in terms of electro-optical SiPM performance when compared to the previous technology which had only a partial optical screening between the SPADs. The most relevant effect is the much higher bias voltage that can be applied to the new device before the noise diverges. This allows to optimize and improve both the photon detection efficiency and the single-photon time resolution. We also coupled the SiPMs to LYSO scintillators to verify the performance for possible application in Positron-Emission Tomography. Thanks to the better electro-optical features we were able to measure an improved coincidence time resolution. Furthermore, the optimal voltage operation region is substantially larger, making this SiPM more suitable for real system application where thousands of channels have to provide stable and reproducible performance

    Beam test results of the irradiated Silicon Drift Detector for ALICE

    Full text link
    The Silicon Drift Detectors will equip two of the six cylindrical layers of high precision position sensitive detectors in the ITS of the ALICE experiment at LHC. In this paper we report the beam test results of a SDD irradiated with 1 GeV electrons. The aim of this test was to verify the radiation tolerance of the device under an electron fluence equivalent to twice particle fluence expected during 10 years of ALICE operation.Comment: 6 pages,6 figures, to appear in the proceedings of International Workshop In high Multiplicity Environments (TIME'05), 3-7 October 2005, Zurich,Switzerlan

    IRST SiPM characterizations and application studies

    Get PDF
    This paper reports on work undertaken, in collaboration with ITC-IRST at Trento, to characterize and test the silicon photomultiplers produced by them, with a view to their future application in high energy and astrophysics experiments. Results of static and dynamic measurents with various IRST devices under controlled climatic conditions, together with measurements with SiPMs from other distributors are reported and discussed with emphasis on progress in the understanding of operational principles and the reduction of noise. Results from the test beam application of the SiPMs are also reported and future plans are discusse
    • …
    corecore