93 research outputs found

    Differential methylation of inflammatory and insulinotropic genes after metabolic surgery in women

    Get PDF
    Context: Biliopancreatic diversion with duodenal switch (BPD-DS), a metabolic bariatric operation, induces durable loss of excess weight and reduced cardiometabolic risk. Altered epigenetic marks are mechanistically associated with environment-driven phenotypic variations. Objective: The current study aimed to compare gene methylation levels before and after BPD-DS to identify epigenetic marks potentially linked to metabolic improvements induced by BPD-DS. Design and patients: Metabolic risk factors and gene methylation levels of 20 women studied mean 12 years (range 4-22) after BPD-DS were compared to those of 20 severely obese surgical candidates as controls, matched for pre-surgical age, body mass index and dyslipidemia and hypertension prevalences. Whole-genome blood DNA methylation analysis enabled between-group differential methylation analyses. We calculated correlations between methylation levels of the most differentially methylated CpG sites and plasma glucose and insulin levels and HOMA-IR. Results: Differential methylation analysis identified 15,343 genes demonstrating at least one differentially methylated CpG site (p<1.43x10-7). Diabetic and inflammation/immune functions were among the most overrepresented from the 200 genes exhibiting the largest group differences in methylation levels. CpG sites methylation levels of genes related to insulin action correlated significantly with fasting insulin levels and homeostatic model of insulin resistance (p≤0.002 for all). Conclusion: These findings suggest that differential methylation levels in obese controls versus treated women may partially explain the durable metabolic improvements after BPD-DS

    GeneSigDB—a curated database of gene expression signatures

    Get PDF
    The primary objective of most gene expression studies is the identification of one or more gene signatures; lists of genes whose transcriptional levels are uniquely associated with a specific biological phenotype. Whilst thousands of experimentally derived gene signatures are published, their potential value to the community is limited by their computational inaccessibility. Gene signatures are embedded in published article figures, tables or in supplementary materials, and are frequently presented using non-standard gene or probeset nomenclature. We present GeneSigDB (http://compbio.dfci.harvard.edu/genesigdb) a manually curated database of gene expression signatures. GeneSigDB release 1.0 focuses on cancer and stem cells gene signatures and was constructed from more than 850 publications from which we manually transcribed 575 gene signatures. Most gene signatures (n = 560) were successfully mapped to the genome to extract standardized lists of EnsEMBL gene identifiers. GeneSigDB provides the original gene signature, the standardized gene list and a fully traceable gene mapping history for each gene from the original transcribed data table through to the standardized list of genes. The GeneSigDB web portal is easy to search, allows users to compare their own gene list to those in the database, and download gene signatures in most common gene identifier formats

    Speech Processing Research Program

    Get PDF
    Contains an introduction and reports on five research projects.National Science Foundation Grant MIP 87-14969National Science Foundation FellowshipU.S. Air Force - Electronic Systems Division Contract F1 9628-89-K-0041U.S. Navy - Office of Naval Research Contract N00014-89-J-148

    Context and Cardiovascular Risk Modification in Two Regions of Ontario, Canada: A Photo Elicitation Study

    Get PDF
    Cardiovascular diseases, which include coronary heart diseases (CHD), remain the leading cause of death in Canada and other industrialized countries. This qualitative study used photo-elicitation, focus groups and in-depth interviews to understand health behaviour change from the perspectives of 38 people who were aware of their high risk for CHD and had received information about cardiovascular risk modification while participating in a larger intervention study. Participants were drawn from two selected regions: Sudbury and District (northern Ontario) and the Greater Toronto Area (southern Ontario). Analysis drew on concepts of place and space to capture the complex interplay between geographic location, sociodemographic position, and people’s efforts to understand and modify their risk for CHD. Three major sites of difference and ambiguity emerged: 1) place and access to health resources; 2) time and food culture; and 3) itineraries or travels through multiple locations. All participants reported difficulties in learning and adhering to new lifestyle patterns, but access to supportive health resources was different in the two regions. Even within regions, subgroups experienced different patterns of constraint and advantage. In each region, “fast” food and traditional foods were entrenched within different temporal and social meanings. Finally, different and shifting strategies for risk modification were required at various points during daily and seasonal travels through neighbourhoods, to workplaces, or on vacation. Thus health education for CHD risk modification should be place-specific and tailored to the needs and resources of specific communities

    UNBOUND

    Get PDF
    Featured here, are the extraordinary works of our graduating Fanshawe Design class. This accomplishment is truly a celebration of the three years of passion, hard work, and dedication put forth by our students. It is our greatest hope that family, friends and the fashion industry will enjoy the creative endeavors of these emerging designers from the Fashion Design program at Fanshawe College in London, Ontario.https://first.fanshawec.ca/famd_design_fashiondesign_unbound/1001/thumbnail.jp

    MEG Can Map Short and Long-Term Changes in Brain Activity following Deep Brain Stimulation for Chronic Pain

    Get PDF
    Deep brain stimulation (DBS) has been shown to be clinically effective for some forms of treatment-resistant chronic pain, but the precise mechanisms of action are not well understood. Here, we present an analysis of magnetoencephalography (MEG) data from a patient with whole-body chronic pain, in order to investigate changes in neural activity induced by DBS for pain relief over both short- and long-term. This patient is one of the few cases treated using DBS of the anterior cingulate cortex (ACC). We demonstrate that a novel method, null-beamforming, can be used to localise accurately brain activity despite the artefacts caused by the presence of DBS electrodes and stimulus pulses. The accuracy of our source localisation was verified by correlating the predicted DBS electrode positions with their actual positions. Using this beamforming method, we examined changes in whole-brain activity comparing pain relief achieved with deep brain stimulation (DBS ON) and compared with pain experienced with no stimulation (DBS OFF). We found significant changes in activity in pain-related regions including the pre-supplementary motor area, brainstem (periaqueductal gray) and dissociable parts of caudal and rostral ACC. In particular, when the patient reported experiencing pain, there was increased activity in different regions of ACC compared to when he experienced pain relief. We were also able to demonstrate long-term functional brain changes as a result of continuous DBS over one year, leading to specific changes in the activity in dissociable regions of caudal and rostral ACC. These results broaden our understanding of the underlying mechanisms of DBS in the human brain

    Molecular and Evolutionary Bases of Within-Patient Genotypic and Phenotypic Diversity in Escherichia coli Extraintestinal Infections

    Get PDF
    Although polymicrobial infections, caused by combinations of viruses, bacteria, fungi and parasites, are being recognised with increasing frequency, little is known about the occurrence of within-species diversity in bacterial infections and the molecular and evolutionary bases of this diversity. We used multiple approaches to study the genomic and phenotypic diversity among 226 Escherichia coli isolates from deep and closed visceral infections occurring in 19 patients. We observed genomic variability among isolates from the same site within 11 patients. This diversity was of two types, as patients were infected either by several distinct E. coli clones (4 patients) or by members of a single clone that exhibit micro-heterogeneity (11 patients); both types of diversity were present in 4 patients. A surprisingly wide continuum of antibiotic resistance, outer membrane permeability, growth rate, stress resistance, red dry and rough morphotype characteristics and virulence properties were present within the isolates of single clones in 8 of the 11 patients showing genomic micro-heterogeneity. Many of the observed phenotypic differences within clones affected the trade-off between self-preservation and nutritional competence (SPANC). We showed in 3 patients that this phenotypic variability was associated with distinct levels of RpoS in co-existing isolates. Genome mutational analysis and global proteomic comparisons in isolates from a patient revealed a star-like relationship of changes amongst clonally diverging isolates. A mathematical model demonstrated that multiple genotypes with distinct RpoS levels can co-exist as a result of the SPANC trade-off. In the cases involving infection by a single clone, we present several lines of evidence to suggest diversification during the infectious process rather than an infection by multiple isolates exhibiting a micro-heterogeneity. Our results suggest that bacteria are subject to trade-offs during an infectious process and that the observed diversity resembled results obtained in experimental evolution studies. Whatever the mechanisms leading to diversity, our results have strong medical implications in terms of the need for more extensive isolate testing before deciding on antibiotic therapies

    Microglia modulates hippocampal synaptic transmission and sleep duration along the light/dark cycle

    Get PDF
    Microglia, the brain's resident macrophages, actively contributes to the homeostasis of cerebral parenchyma by sensing neuronal activity and supporting synaptic remodeling and plasticity. While several studies demonstrated different roles for astrocytes in sleep, the contribution of microglia in the regulation of sleep/wake cycle and in the modulation of synaptic activity in the different day phases has not been deeply investigated. Using light as a zeitgeber cue, we studied the effects of microglial depletion with the colony stimulating factor-1 receptor antagonist PLX5622 on the sleep/wake cycle and on hippocampal synaptic transmission in male mice. Our data demonstrate that almost complete microglial depletion increases the duration of NREM sleep and reduces the hippocampal excitatory neurotransmission. The fractalkine receptor CX3CR1 plays a relevant role in these effects, because cx3cr1GFP/GFP mice recapitulate what found in PLX5622-treated mice. Furthermore, during the light phase, microglia express lower levels of cx3cr1 and a reduction of cx3cr1 expression is also observed when cultured microglial cells are stimulated by ATP, a purinergic molecule released during sleep. Our findings suggest that microglia participate in the regulation of sleep, adapting their cx3cr1 expression in response to the light/dark phase, and modulating synaptic activity in a phase-dependent manner.Bordeaux Region Aquitaine Initiative for Neuroscienc

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
    corecore