4 research outputs found

    The shallow marine ostracod communities of the Azores (Mid- North Atlantic): taphonomy and palaeoecology

    Get PDF
    This is the first palaeoecological and taphonomical study of the Recent marine ostracods from the Azores. The aims of this work were to address the following questions: i) to establish the typical ostracod assemblages from the shallow waters of the Azores; ii) to determine the bathymetric ranges for each ostracod species; iii) to investigate the time span and depth in which significant transport occurs; iv) to quantify the amount of out of habitat transport between sandy beaches, tide pools and the sublittoral; v) to determine distinctive taphonomic features that can be used to recognize the amount of temporal resolution in ostracod assemblages. Fifteen species were recovered, representing 8 families and 12 genera (Loxoconcha, Neonesidea, Xestoleberis, Aurila, Urocythereis, Heterocythereis, Carinocythereis, Callistocythere, Leptocythere, Semicytherura, Lanceostoma and Cylindroleberis). The living assemblages are dominated by specimens of the Loxoconchidae, Xestoleberidae and Hemicytheridae, whereas the dead assemblages are dominated by specimens of the Loxoconchidae, Hemicytheridae, Bairdiidae, Xestoleberidae and Trachyleberidae. The shift from life-dominated assemblages in the shallower depths to death-dominated assemblages at greater depths is a consequence of significant transport downwards. The abundance of ostracods is higher in the first 10-20 m depth, especially in fine to medium sandy substrates. Considerable differences among islands were supported by the Bayesian model, as a consequence of the physical and hydrodynamic factors that differently affect each of the Azorean islands. Large-scale (sea-surface currents, Holocene relative sea-level, storms) and small-scale processes are responsible for shaping the Azorean Recent marine ostracod communities. No living specimens were found in the samples collected at the beach faces, thus reinforcing former interpretations of one of the authors (S. Ávila) that advocate that at a global scale, sandy beaches in oceanic islands located at temperate latitudes are almost or even completely devoid of life due to historical reasons related with the sea level changes

    The shallow marine ostracod communities of the Azores (Mid-North Atlantic) : taphonomy and palaeoecology

    Get PDF
    This is the first palaeoecological and taphonomical study of the Recent marine ostracods from the Azores. The aims of this work were to address the following questions: i) to establish the typical ostracod assemblages from the shallow waters of the Azores; ii) to determine the bathymetric ranges for each ostracod species; iii) to investigate the time span and depth in which significant transport occurs; iv) to quantify the amount of out of habitat transport between sandy beaches, tide pools and the sublittoral; v) to determine distinctive taphonomic features that can be used to recognize the amount of temporal resolution in ostracod assemblages. Fifteen species were recovered, representing 8 families and 12 genera (Loxoconcha, Neonesidea, Xestoleberis, Aurila, Urocythereis, Heterocythereis, Carinocythereis, Callistocythere, Leptocythere, Semicytherura, Lanceostoma and Cylindroleberis). The living assemblages are dominated by specimens of the Loxoconchidae, Xestoleberidae and Hemicytheridae, whereas the dead assemblages are dominated by specimens of the Loxoconchidae, Hemicytheridae, Bairdiidae, Xestoleberidae and Trachyleberidae. The shift from life-dominated assemblages in the shallower depths to death-dominated assemblages at greater depths is a consequence of significant transport downwards. The abundance of ostracods is higher in the first 10-20 m depth, especially in fine to medium sandy substrates. Considerable differences among islands were supported by the Bayesian model, as a consequence of the physical and hydrodynamic factors that differently affect each of the Azorean islands. Large-scale (sea-surface currents, Holocene relative sea-level, storms) and small-scale processes are responsible for shaping the Azorean Recent marine ostracod communities. No living specimens were found in the samples collected at the beach faces, thus reinforcing former interpretations of one of the authors (S. Ávila) that advocate that at a global scale, sandy beaches in oceanic islands located at temperate latitudes are almost or even completely devoid of life due to historical reasons related with the sea level changes

    Modeling of the condyle elements within a biomechanical knee model

    Get PDF
    The development of a computational multibody knee model able to capture some of the fundamental properties of the human knee articulation is presented. This desideratum is reached by including the kinetics of the real knee articulation. The research question is whether an accurate modeling of the condyle contact in the knee will lead to reproduction of the complex combination of flexion/extension, abduction/adduction and tibial rotation ob-served in the real knee? The model is composed by two anatomic segments, the tibia and the femur, whose characteristics are functions of the geometric and anatomic properties of the real bones. The biomechanical model characterization is developed under the framework of multibody systems methodologies using Cartesian coordinates. The type of approach used in the proposed knee model is the joint surface contact conditions between ellipsoids, represent-ing the two femoral condyles, and points, representing the tibial plateau and the menisci. These elements are closely fitted to the actual knee geometry. This task is undertaken by con-sidering a parameter optimization process to replicate experimental data published in the lit-erature, namely that by Lafortune and his co-workers in 1992. Then, kinematic data in the form of flexion/extension patterns are imposed on the model corresponding to the stance phase of the human gait. From the results obtained, by performing several computational simulations, it can be observed that the knee model approximates the average secondary mo-tion patterns observed in the literature. Because the literature reports considerable inter-individual differences in the secondary motion patterns, the knee model presented here is also used to check whether it is possible to reproduce the observed differences with reasonable variations of bone shape parameters. This task is accomplished by a parameter study, in which the main variables that define the geometry of condyles are taken into account. It was observed that the data reveal a difference in secondary kinematics of the knee in flexion ver-sus extension. The likely explanation for this fact is the elastic component of the secondary motions created by the combination of joint forces and soft tissue deformations. The proposed knee model is, therefore, used to investigate whether this observed behavior can be explained by reasonable elastic deformations of the points representing the menisci in the model.Fundação para a Ciência e a Tecnologia (FCT) - PROPAFE – Design and Development of a Patello-Femoral Prosthesis (PTDC/EME-PME/67687/2006), DACHOR - Multibody Dynamics and Control of Hybrid Active Orthoses MIT-Pt/BSHHMS/0042/2008, BIOJOINTS - Development of advanced biological joint models for human locomotion biomechanics (PTDC/EME-PME/099764/2008)

    The shallow marine ostracod communities of the Azores (Mid-North Atlantic) : taphonomy and palaeoecology

    No full text
    This is the first palaeoecological and taphonomical study of the Recent marine ostracods from the Azores. The aims of this work were to address the following questions: i) to establish the typical ostracod assemblages from the shallow waters of the Azores; ii) to determine the bathymetric ranges for each ostracod species; iii) to investigate the time span and depth in which significant transport occurs; iv) to quantify the amount of out of habitat transport between sandy beaches, tide pools and the sublittoral; v) to determine distinctive taphonomic features that can be used to recognize the amount of temporal resolution in ostracod assemblages. Fifteen species were recovered, representing 8 families and 12 genera (Loxoconcha, Neonesidea, Xestoleberis, Aurila, Urocythereis, Heterocythereis, Carinocythereis, Callistocythere, Leptocythere, Semicytherura, Lanceostoma and Cylindroleberis). The living assemblages are dominated by specimens of the Loxoconchidae, Xestoleberidae and Hemicytheridae, whereas the dead assemblages are dominated by specimens of the Loxoconchidae, Hemicytheridae, Bairdiidae, Xestoleberidae and Trachyleberidae. The shift from life-dominated assemblages in the shallower depths to death-dominated assemblages at greater depths is a consequence of significant transport downwards. The abundance of ostracods is higher in the first 10-20 m depth, especially in fine to medium sandy substrates. Considerable differences among islands were supported by the Bayesian model, as a consequence of the physical and hydrodynamic factors that differently affect each of the Azorean islands. Large-scale (sea-surface currents, Holocene relative sea-level, storms) and small-scale processes are responsible for shaping the Azorean Recent marine ostracod communities. No living specimens were found in the samples collected at the beach faces, thus reinforcing former interpretations of one of the authors (S. Ávila) that advocate that at a global scale, sandy beaches in oceanic islands located at temperate latitudes are almost or even completely devoid of life due to historical reasons related with the sea level changes
    corecore