32 research outputs found
Genetic Variants in Nuclear-Encoded Mitochondrial Genes Influence AIDS Progression
Background: The human mitochondrial genome includes only 13 coding genes while nuclear-encoded genes account for 99% of proteins responsible for mitochondrial morphology, redox regulation, and energetics. Mitochondrial pathogenesis occurs in HIV patients and genetically, mitochondrial DNA haplogroups with presumed functional differences have been associated with differential AIDS progression. Methodology/Principal Findings: Here we explore whether single nucleotide polymorphisms (SNPs) within 904 of the estimated 1,500 genes that specify nuclear-encoded mitochondrial proteins (NEMPs) influence AIDS progression among HIV-1 infected patients. We examined NEMPs for association with the rate of AIDS progression using genotypes generated by an Affymetrix 6.0 genotyping array of 1,455 European American patients from five US AIDS cohorts. Successfully genotyped SNPs gave 50% or better haplotype coverage for 679 of known NEMP genes. With a Bonferroni adjustment for the number of genes and tests examined, multiple SNPs within two NEMP genes showed significant association with AIDS progression: acyl-CoA synthetase medium-chain family member 4 (ACSM4) on chromosome 12 and peroxisomal D3,D2-enoyl- CoA isomerase (PECI) on chromosome 6. Conclusions: Our previous studies on mitochondrial DNA showed that European haplogroups with presumed functional differences were associated with AIDS progression and HAART mediated adverse events. The modest influences of nuclearencoded mitochondrial genes found in the current study add support to the idea that mitochondrial function plays a role in AIDS pathogenesis
Adolescent Brain Development and the Risk for Alcohol and Other Drug Problems
Dynamic changes in neurochemistry, fiber architecture, and tissue composition occur in the adolescent brain. The course of these maturational processes is being charted with greater specificity, owing to advances in neuroimaging and indicate grey matter volume reductions and protracted development of white matter in regions known to support complex cognition and behavior. Though fronto-subcortical circuitry development is notable during adolescence, asynchronous maturation of prefrontal and limbic systems may render youth more vulnerable to risky behaviors such as substance use. Indeed, binge-pattern alcohol consumption and comorbid marijuana use are common among adolescents, and are associated with neural consequences. This review summarizes the unique characteristics of adolescent brain development, particularly aspects that predispose individuals to reward seeking and risky choices during this phase of life, and discusses the influence of substance use on neuromaturation. Together, findings in this arena underscore the importance of refined research and programming efforts in adolescent health and interventional needs
XSRU-IoMT: Explainable simple recurrent units for threat detection in Internet of Medical Things networks
Fabrication of BiFeO3-g-C3N4-WO3 Z-scheme heterojunction as highly efficient visible-light photocatalyst for water reduction and 2,4-dichlorophenol degradation: Insight mechanism
Corrigendum to “Fabrication of BiFeO3-g-C3N4-WO3 Z-scheme heterojunction as highly efficient visible-light photocatalyst for water reduction and 2,4-dichlorophenol degradation: Insight mechanism” [J. Hazard. Mater. 397 (2020) 122708]
Experimental and DFT Studies of Au Deposition Over WO3/g-C3N4 Z-Scheme Heterojunction
AbstractA typical Z-scheme system is composed of two photocatalysts which generate two sets of charge carriers and split water into H2 and O2 at different locations. Scientists are struggling to enhance the efficiencies of these systems by maximizing their light absorption, engineering more stable redox couples, and discovering new O2 and H2 evolutions co-catalysts. In this work, Au decorated WO3/g-C3N4 Z-scheme nanocomposites are fabricated via wet-chemical and photo-deposition methods. The nanocomposites are utilized in photocatalysis for H2 production and 2,4-dichlorophenol (2,4-DCP) degradation. It is investigated that the optimized 4Au/6% WO3/CN nanocomposite is highly efficient for production of 69.9 and 307.3 µmol h−1 g−1 H2 gas, respectively, under visible-light (λ > 420 nm) and UV–visible illumination. Further, the fabricated 4Au/6% WO3/CN nanocomposite is significant (i.e., 100% degradation in 2 h) for 2,4-DCP degradation under visible light and highly stable in photocatalysis. A significant 4.17% quantum efficiency is recorded for H2 production at wavelength 420 nm. This enhanced performance is attributed to the improved charge separation and the surface plasmon resonance effect of Au nanoparticles. Solid-state density functional theory simulations are performed to countercheck and validate our experimental data. Positive surface formation energy, high charge transfer, and strong non-bonding interaction via electrostatic forces confirm the stability of 4Au/6% WO3/CN interface.</jats:p
