2,994 research outputs found

    Simultaneous conduction and valence band quantisation in ultra-shallow, high density doping profiles in semiconductors

    Full text link
    We demonstrate simultaneous quantisation of conduction band (CB) and valence band (VB) states in silicon using ultra-shallow, high density, phosphorus doping profiles (so-called Si:P δ\delta-layers). We show that, in addition to the well known quantisation of CB states within the dopant plane, the confinement of VB-derived states between the sub-surface P dopant layer and the Si surface gives rise to a simultaneous quantisation of VB states in this narrow region. We also show that the VB quantisation can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantised VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantised CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantised CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.Comment: 5 pages, 2 figures and supplementary materia

    Mouse frontal cortex mediates additive multisensory decisions

    Get PDF
    The brain can combine auditory and visual information to localize objects. However, the cortical substrates underlying audiovisual integration remain uncertain. Here, we show that mouse frontal cortex combines auditory and visual evidence; that this combination is additive, mirroring behavior; and that it evolves with learning. We trained mice in an audiovisual localization task. Inactivating frontal cortex impaired responses to either sensory modality, while inactivating visual or parietal cortex affected only visual stimuli. Recordings from >14,000 neurons indicated that after task learning, activity in the anterior part of frontal area MOs (secondary motor cortex) additively encodes visual and auditory signals, consistent with the mice's behavioral strategy. An accumulator model applied to these sensory representations reproduced the observed choices and reaction times. These results suggest that frontal cortex adapts through learning to combine evidence across sensory cortices, providing a signal that is transformed into a binary decision by a downstream accumulator

    Influence of Adiposity on Insulin Resistance and Glycemia Markers Among UK Children of South Asian, Black African-Caribbean, and White European Origin Child Heart and Health Study in England

    Get PDF
    OBJECTIVE: Ethnic differences in type 2 diabetes risk between South Asians and white Europeans originate before adult life and are not fully explained by higher adiposity levels in South Asians. Although metabolic sensitivity to adiposity may differ between ethnic groups, this has been little studied in childhood. We have therefore examined the associations among adiposity, insulin resistance, and glycemia markers in children of different ethnic origins. RESEARCH DESIGN AND METHODS: Cross-sectional study of 4,633 9- to 10-year-old children (response rate 68%) predominantly of South Asian, black African-Caribbean, and white European origin (n = 1,266, 1,176, and 1,109, respectively) who had homeostasis model assessments of insulin resistance (HOMA-IR), glycemia markers (HbA1c and fasting glucose), and adiposity (BMI, waist circumference, skinfold thicknesses, and bioimpedance [fat mass]). RESULTS: All adiposity measures were positively associated with HOMA-IR in all ethnic groups, but associations were stronger among South Asians compared to black African-Caribbeans and white Europeans. For a 1-SD increase in fat mass percentage, percentage differences in HOMA-IR were 37.5% (95% CI 33.3–41.7), 29.7% (25.8–33.8), and 27.0% (22.9–31.2), respectively (P interaction < 0.001). All adiposity markers were positively associated with HbA1c in South Asians and black African-Caribbeans but not in white Europeans; for a 1-SD increase in fat mass percentage, percentage differences in HbA1c were 0.04% (95% CI 0.03–0.06), 0.04% (0.02–0.05), and 0.02% (−0.00 to 0.04), respectively (P interaction < 0.001). Patterns for fasting glucose were less consistent. CONCLUSIONS: South Asian children are more metabolically sensitive to adiposity. Early prevention or treatment of childhood obesity may be critical for type 2 diabetes prevention, especially in South Asians

    Are Ethnic and Gender Specific Equations Needed to Derive Fat Free Mass from Bioelectrical Impedance in Children of South Asian, Black African-Caribbean and White European Origin? Results of the Assessment of Body Composition in Children Study

    Get PDF
    Background Bioelectrical impedance analysis (BIA) is a potentially valuable method for assessing lean mass and body fat levels in children from different ethnic groups. We examined the need for ethnic- and gender-specific equations for estimating fat free mass (FFM) from BIA in children from different ethnic groups and examined their effects on the assessment of ethnic differences in body fat. Methods Cross-sectional study of children aged 8–10 years in London Primary schools including 325 South Asians, 250 black African-Caribbeans and 289 white Europeans with measurements of height, weight and arm-leg impedance (Z; Bodystat 1500). Total body water was estimated from deuterium dilution and converted to FFM. Multilevel models were used to derive three types of equation {A: FFM = linear combination(height+weight+Z); B: FFM = linear combination(height2/Z); C: FFM = linear combination(height2/Z+weight)}. Results Ethnicity and gender were important predictors of FFM and improved model fit in all equations. The models of best fit were ethnicity and gender specific versions of equation A, followed by equation C; these provided accurate assessments of ethnic differences in FFM and FM. In contrast, the use of generic equations led to underestimation of both the negative South Asian-white European FFM difference and the positive black African-Caribbean-white European FFM difference (by 0.53 kg and by 0.73 kg respectively for equation A). The use of generic equations underestimated the positive South Asian-white European difference in fat mass (FM) and overestimated the positive black African-Caribbean-white European difference in FM (by 4.7% and 10.1% respectively for equation A). Consistent results were observed when the equations were applied to a large external data set. Conclusions Ethnic- and gender-specific equations for predicting FFM from BIA provide better estimates of ethnic differences in FFM and FM in children, while generic equations can misrepresent these ethnic differences

    Toeplitz Quantization of K\"ahler Manifolds and gl(N)gl(N) NN\to\infty

    Full text link
    For general compact K\"ahler manifolds it is shown that both Toeplitz quantization and geometric quantization lead to a well-defined (by operator norm estimates) classical limit. This generalizes earlier results of the authors and Klimek and Lesniewski obtained for the torus and higher genus Riemann surfaces, respectively. We thereby arrive at an approximation of the Poisson algebra by a sequence of finite-dimensional matrix algebras gl(N)gl(N), NN\to\infty.Comment: 17 pages, AmsTeX 2.1, Sept. 93 (rev: only typos are corrected

    Evaluation of neck circumference as a predictor of elevated cardiometabolic risk outcomes in 5–8-year-old Brazilian children

    Get PDF
    Background: Childhood overweight and obesity is a global health problem that continues to worsen in many low- and middle-income countries. Low-cost measurements for monitoring overweight and relative metabolic risk, such as neck circumference (NC), should be evaluated in different populations and age groups. / Aim: To test associations of NC and BMI with cardiometabolic parameters in 5-8-year-old Brazilian children. / Methods: This cross-sectional study carried out from 2004–2006 measured height, weight and NC by anthropometry, and estimated fat and fat-free mass by bioelectrical impedance. Cardiometabolic risk factors assessed were systolic and diastolic blood pressure, high- and low-density lipoprotein cholesterol, triglycerides, and homeostatic model assessment of insulin resistance (HOMA). Associations of NC and BMI with cardiometabolic risk factors were tested using multiple regression and precision-recall plot analysis. / Results: Analyses included 371 children (52% female). NC associated positively with BMI, fat mass, and fat-free mass, and with systolic blood pressure and HOMA following adjustment for age in sex-stratified multiple regression models. However, the latter relationships largely disappeared following adjustment for BMI. Area under the curve for NC or BMI in association with systolic blood pressure or HOMA >90th percentile was low in the pooled sample, indicating poor classifier performance. / Conclusions: NC and BMI demonstrated similar associations with cardiometabolic risk factors, although NC mostly did not correlate with risk factors independently of BMI. In contrast to previous studies, NC was a poor classifier of cardiometabolic risk factors in children. The association of NC with both fat and fat-free mass may aid in explaining its poor performance

    Anchoring of proteins to lactic acid bacteria

    Get PDF
    The anchoring of proteins to the cell surface of lactic acid bacteria (LAB) using genetic techniques is an exciting and emerging research area that holds great promise for a wide variety of biotechnological applications. This paper reviews five different types of anchoring domains that have been explored for their efficiency in attaching hybrid proteins to the cell membrane or cell wall of LAB. The most exploited anchoring regions are those with the LPXTG box that bind the proteins in a covalent way to the cell wall. In recent years, two new modes of cell wall protein anchoring have been studied and these may provide new approaches in surface display. The important progress that is being made with cell surface display of chimaeric proteins in the areas of vaccine development and enzyme- or whole-cell immobilisation is highlighted.

    The Mid-Infrared Instrument for the James Webb Space Telescope, III: MIRIM, The MIRI Imager

    Get PDF
    In this article, we describe the MIRI Imager module (MIRIM), which provides broad-band imaging in the 5 - 27 microns wavelength range for the James Webb Space Telescope. The imager has a 0"11 pixel scale and a total unobstructed view of 74"x113". The remainder of its nominal 113"x113" field is occupied by the coronagraphs and the low resolution spectrometer. We present the instrument optical and mechanical design. We show that the test data, as measured during the test campaigns undertaken at CEA-Saclay, at the Rutherford Appleton Laboratory, and at the NASA Goddard Space Flight Center, indicate that the instrument complies with its design requirements and goals. We also discuss the operational requirements (multiple dithers and exposures) needed for optimal scientific utilization of the MIRIM.Comment: 29 pages, 9 figure

    One-dimensional spin texture of Bi(441): Quantum spin Hall properties without a topological insulator

    Get PDF
    The high index (441) surface of bismuth has been studied using Scanning Tunnelling Microscopy (STM), Angle Resolved Photoemission Spectroscopy (APRES) and spin-resolved ARPES. The surface is strongly corrugated, exposing a regular array of (110)-like terraces. Two surface localised states are observed, both of which are linearly dispersing in one in-plane direction (kxk_x), and dispersionless in the orthogonal in-plane direction (kyk_y), and both of which have a Dirac-like crossing at kxk_x=0. Spin ARPES reveals a strong in-plane polarisation, consistent with Rashba-like spin-orbit coupling. One state has a strong out-of-plane spin component, which matches with the miscut angle, suggesting its {possible} origin as an edge-state. The electronic structure of Bi(441) has significant similarities with topological insulator surface states and is expected to support one dimensional Quantum Spin Hall-like coupled spin-charge transport properties with inhibited backscattering, without requiring a topological insulator bulk
    corecore