
Article
Mouse frontal cortexmedi
ates additivemultisensory
decisions
Highlights
d Mice combine visual and auditory evidence additively to

solve an audiovisual task

d Optogenetic inactivation indicates a key role for frontal cortex

in the task

d After learning, neurons in frontal area MOs represent stimuli

and predict choice

d An accumulator model applied to their activity reproduces

mouse behavior
Coen et al., 2023, Neuron 111, 1–16
August 2, 2023 ª 2023 The Authors. Published by Elsevier Inc.
https://doi.org/10.1016/j.neuron.2023.05.008
Authors

Philip Coen, Timothy P.H. Sit,

Miles J. Wells, Matteo Carandini,

Kenneth D. Harris

Correspondence
p.coen@ucl.ac.uk

In brief

Coen, Sit, et al. train mice in an

audiovisual task and show that they

combine evidence across modalities

additively, evenwhen it is conflicting. This

combination relies on activity in frontal

area MOs. After learning, this activity

represents auditory and visual stimuli

additively and can be used to reproduce

behavior.
ll

mailto:p.coen@ucl.ac.�uk
https://doi.org/10.1016/j.neuron.2023.05.008


OPEN ACCESS

Please cite this article in press as: Coen et al., Mouse frontal cortex mediates additive multisensory decisions, Neuron (2023), https://doi.org/10.1016/
j.neuron.2023.05.008
ll
Article

Mouse frontal cortex mediates additive
multisensory decisions
Philip Coen,1,3,4,6,* Timothy P.H. Sit,2,4 Miles J. Wells,1 Matteo Carandini,3,5 and Kenneth D. Harris1,5
1UCL Queen Square Institute of Neurology, University College London, London, UK
2Sainsbury-Wellcome Center, University College London, London, UK
3UCL Institute of Ophthalmology, University College London, London, UK
4These authors contributed equally
5These authors contributed equally
6Lead contact

*Correspondence: p.coen@ucl.ac.uk

https://doi.org/10.1016/j.neuron.2023.05.008
SUMMARY
The brain can combine auditory and visual information to localize objects. However, the cortical substrates
underlying audiovisual integration remain uncertain. Here, we show thatmouse frontal cortex combines audi-
tory and visual evidence; that this combination is additive, mirroring behavior; and that it evolves with
learning. We trained mice in an audiovisual localization task. Inactivating frontal cortex impaired responses
to either sensory modality, while inactivating visual or parietal cortex affected only visual stimuli. Recordings
from >14,000 neurons indicated that after task learning, activity in the anterior part of frontal area MOs (sec-
ondary motor cortex) additively encodes visual and auditory signals, consistent with the mice’s behavioral
strategy. An accumulator model applied to these sensory representations reproduced the observed choices
and reaction times. These results suggest that frontal cortex adapts through learning to combine evidence
across sensory cortices, providing a signal that is transformed into a binary decision by a downstream
accumulator.
INTRODUCTION

A simple strategy to combine visual and auditory signals, which

is optimal if they are independent,1,2 is to add them. Given inde-

pendent visual evidence V and auditory evidenceA, the log odds

of a stimulus being on the right or left (R or L) is a sum of functions

that each depend on only one modality (see derivation in STAR

Methods):

log

�
pðR j A;VÞ
pðL j A;VÞ

�
= log

�
pðV j RÞ
pðV j LÞ

�
+ log

�
pðA j RÞ
pðA j LÞ

�

+ log

�
pðRÞ
pðLÞ

�
= fðVÞ+gðAÞ+b

(Equation 1)

Multisensory integration in humans and animals is often addi-

tive.3–13 Nevertheless, some studies suggest that humans,14–16

other primates,17 and mice18,19 can break this additive law.

One way that the additive law could be broken is if one modality

is dominant, meaning that if the modalities conflict, the non-

dominant modality is ignored.18

In rodents and other mammals, neurons integrating across

modalities have been observed in superior colliculus,20–24 thal-

amus,25–28 parietal cortex,4,6,7,18,29–38 frontal cortex,39 and
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possibly40 even primary sensory cortices.41–50 However, it is

not clear which cortical areas support multisensory decisions

or how multisensory signals are encoded by neuronal popula-

tions in these regions.51 Perturbation studies have focused

primarily on parietal cortex and disagree as to whether this

region is18 or is not29,52,51 critical for multisensory behavior.

The brain could use different strategies to make multisensory

decisions. For example, while visual and auditory cortices might

be necessary and sufficient for behavioral responses to unisen-

sory visual and auditory stimuli, a third region might be required

for multisensory responses while playing no role in responses to

either modality alone. Alternatively, unisensory and multisensory

evidence could be processed by the same circuits: information

frombothsensesmayconvergeonabrain region thathasacausal

role in behavioral responses to bothmodalities, alone or in combi-

nation. If this region added evidence from the two modalities, it

could drive behavior according to the additive law (Equation 1).

We studied an audiovisual localization task in mice and

found support for the second hypothesis: multisensory evi-

dence is processed by circuits that also process unisensory

evidence, and these circuits involve the frontal cortex. Mouse

behavior was consistent with the additive model (Equation 1).

Optogenetic inactivation of visual or parietal cortex affected

responses to visual stimuli only. Inactivating anterior frontal

cortex (secondary motor area MOs) affected responses to
, August 2, 2023 ª 2023 The Authors. Published by Elsevier Inc. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:p.coen@ucl.ac.uk
https://doi.org/10.1016/j.neuron.2023.05.008
http://creativecommons.org/licenses/by/4.0/


B

H

E

A

F G

C D

Figure 1. Spatial localization task reveals additive audiovisual integration

(A) Behavioral task. Top: visual and auditory stimuli are presented using 3 screens and 7 speakers. In the example, auditory and visual stimuli are presented on the

right, and the subject is rewarded for turning the wheel counter-clockwise to center the stimuli (a ‘‘rightward choice’’). Bottom: task timeline. After inter-trial

interval of 1.5–2.5 s, micemust hold the wheel still for 100–250ms. They then have 1.5 s to indicate their choice. During the first 500ms of this period, the stimulus

does not move (‘‘open loop’’), but during the final 1 s, stimulus position is yoked to wheel movement. After training, over 90% of choices occurred during open

loop (Figures S1D–S1F).

(B) Median reaction times for each stimulus type, relative to mean across stimulus types. Only trials with 40% contrast were included. Gray lines: individual mice;

black line: mean across 17 mice. Long and short dashes indicate example mice from left and right of (C).

(C) Fraction of rightward choices at each visual contrast and auditory stimulus location for two example mice. Curves: fit of the additive model.

(D) As in (C), but averaged across 17 mice (�156,000 trials). Curves: combined fit across all mice.

(E) Mouse performance (% rewarded trials) for different stimulus types (‘‘correct’’ is undefined on conflict trials). Plotted as in (B).

(F and G) Data from (C) and (D), replotted as odds of choosing right vs. left (in log coordinates, Y axis) as a function of visual contrast raised to the power g. Model

predictions are straight lines.

(H) Log2-likelihood ratio for the additive vs. full model where each combination of visual and auditory stimuli is allowed its own behavioral response that need not

follow an additive law. (5-fold cross-validation, relative to a bias-only model). Triangles and diamonds: mice from left and right of (C). Squares: combined fit across

17 mice. There is no significant difference between models (p > 0.05). ***p < 0.001 (paired t test).
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both modalities. Population recordings revealed that this re-

gion encoded stimuli of both modalities additively. Its sensory

responses developed with task learning and persisted during

passive stimulus presentation. An accumulator model applied

to these passive responses reproduced the pattern of choices

and reaction times observed in the mice.
2 Neuron 111, 1–16, August 2, 2023
RESULTS

Wedeveloped a two-alternative forced-choice audiovisual spatial

localization task for mice (Figure 1A). We extended a visual task

where mice turn a steering wheel to indicate whether a grating of

variable contrast was on their left or right53 by adding an array of
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speakers. On each trial, at the time the grating appeared, the left,

center, or right speaker played an amplitude-modulated noise.

On coherent multisensory trials (auditory and visual stimuli on the

same side), and on unisensory trials (zero contrast or central audi-

tory stimulus), mice earned a water reward for indicating the cor-

rect side. On conflictmultisensory trials (auditory and visual stimuli

on opposite sides), or on neutral trials (central auditory and zero

contrast visual), mice were rewarded randomly (Figure S1A).

Mice learned to perform this task proficiently (Figure S1B), reach-

ing 96% ± 3% correct (mean ± SD, n = 17 mice) for the easiest

stimuli (coherent trials with the highest contrast).

Mice responded fastest in coherent trials with high-contrast vi-

sual stimuli (Figure 1B). Reaction times were typically 190 ±

120 ms (median ± MAD, n = 156,000 trials in 17 mice) and were

22 ± 20ms faster in unisensory auditory thanunisensory visual tri-

als (mean ± SD, n = 17mice, p < 0.001, paired t test), suggesting

that the circuits responsible for audiovisual decisions receive audi-

tory signals earlier than visual signals54,55 (Figures 1B, S1M, S1O,

and S1Q). In multisensory trials, reaction times were 25 ± 18 ms

faster for coherent than conflict trials (p < 0.001, paired t test). This

suggests that multisensory inputs feed into a single integrator,

rather than two unisensory integrators racing independently to

reach threshold.5,56 Reaction timeswere faster at higher contrasts

for unisensory visual and coherent multisensory trials (p < 0.001,

linear mixed-effects model) and were possibly even faster in

coherent trials than unisensory auditory trials, particularly at high

contrast levels (p < 0.08, paired t test).

Spatial localization task reveals additive audiovisual
integration
Mice used bothmodalities to perform the task, evenwhen the two

were in conflict. The fraction of rightward choices, which de-

pended smoothly on visual contrast, further increased or

decreased when sounds were on the right or on the left

(Figures 1Cand 1D, red vs. blue).Miceperformedmoreaccurately

on coherent trials than unisensory trials (Figures 1E, S1N, and

S1P), indicating that theyattended tobothmodalities.8,12,54,55,57,58

To test whether mice make multisensory decisions additively,

we fit the additive model to their choices. Equation 1 can be

rewritten as:

pðRÞ = sðfðVÞ + gðAÞ + bÞ (Equation 2)

where pðRÞ is the probability of making a rightward choice, and

sðxÞ = 1=ð1 + expð� xÞÞ is the logistic function. We first fit this

model with no constraints on the functions f and g and found

that it provided excellent fits (Figure S2F). We further simplified

it by modeling f with a power function to account for contrast

saturation in the visual system59:

fðVÞ = vRVR
g � vLVL

g (Equation 3)

gðAÞ = aRAR � aLAL (Equation 4)

Here VR and VL are right and left contrasts (at least one of

which was always zero), and AR and AL are indicator variables

for right and left auditory stimuli (with value 1 or 0 depending

on the auditory stimulus position). This model performed almost

as well as the 11-parameter unconstrained model (Figure S2F)
with only 6 free parameters: bias (b), visual exponent (g), visual

sensitivities (vR and vL), and auditory sensitivities (aR and aL). In

the rest of the paper, we thus adopted this simplified version of

the additive model.

The additive model provided excellent fits to the multisensory

decisions of all mice. It fit both the choices of individual mice

(Figure 1C) and the choices averaged across mice (Figure 1D).

A simple view of these data can be obtained by representing

them in terms of log odds of rightward choices (as in Equation 1)

vs. linearized contrast (contrast raised by the exponent g, Equa-

tion 3). As predicted by the model, the responses to unisensory

visual stimuli fall on a line, and auditory cues shift this line addi-

tively (Figures 1F, 1G, and S3A–S3O). The intercept of the line is

determined by the bias b, the slope by the visual sensitivity v, and

the additive offset by the auditory sensitivity a.

The additive model performed better than non-additive

models, including models where one modality dominates the

other (Figures S2A–S2E). It performed as well as a full model,

which used 25 parameters to fit the response to each stimulus

combination, without additive constraints (Figure 1H). The

additive model could be fit from the unisensory choices

alone, indicating that mice use the same behavioral strategy on

coherent and conflict trials (Figure S3P). As predicted by the ad-

ditive model, equal and opposite auditory and visual stimuli (i.e.,

stimuli eliciting an equal probability of left and right choices when

presented alone) led to neutral behavior when presented

together, i.e., a 50% chance of left or right choices (Figure S2G).

In contrast, a model of sensory dominance would predict that

these stimuli lead to choices determined by the dominant

modality.

Optogenetic inactivation identifies roles of sensory and
frontal cortical areas
To determine which cortical regions are necessary to perform

the task, we used laser-scanning optogenetic inactivation

across 52 sites in dorsal cortex. We inactivated with transcranial

laser illumination in mice expressing ChR2 in parvalbumin inter-

neurons59–62 (3 mW; 462 nm; 1.5 s duration following stimulus

onset; Figure 2A). We combined results across mice and hemi-

spheres because theywere qualitatively consistent and symmet-

ric (Figures S4A and S4B). Control measurements established

that mouse choices were unaffected by target locations just

outside the brain (Figure S4C). Because of light scattering in

the brain, we expect inactivation to impact areas �1 mm from

the target location59,63,64 (Figure 2A). For this reason, and

because brain curvature hides auditory cortex, laser sites be-

tween primary visual and auditory areas likely inactivated both

visual and auditory cortices. We refer to these sites as ‘‘lateral

sensory cortex.’’ We found that inactivating them impacted the

choices, as did inactivating visual and frontal areas. However, in-

activating these different regions had distinct impacts on task

performance, which we detail below.

Inactivating visual cortex impaired visual but not auditory

choices. As seen in visual tasks,53,59,65 inactivation of visual cor-

tex reduced responses to contralateral visual stimuli, whether

presented alone (Figure 2B) or with auditory stimuli (Figures 2D

and 2E). It had a smaller effect in coherent trials, when those

choices could be based on audition alone (Figure 2D, p < 0.01,
Neuron 111, 1–16, August 2, 2023 3
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Figure 2. Optogenetic inactivation identifies roles of sensory and frontal cortical areas

(A) Schematic of inactivation sites. On�75%of trials, a blue laser randomly illuminated one of 52 sites (blue dots) for 1.5 s following stimulus onset. Dashed circle:

estimated radius (1 mm) of effective laser stimulation. Yellow, orange, and magenta: primary visual region (VISp), primary auditory region (AUDp), and secondary

motor cortex (MOs).

(B) Change in the fraction of rightward choices for each laser site for unisensory left visual stimulus trials. Red and blue dots: increases and decreases in fraction of

rightward choices; dot size represents statistical significance (5 mice, shuffle test, see STARMethods). Data for right stimulus trials were included after reflecting

the maps (see Figure S4A for both individually).

(C) As in (B), but for unisensory auditory trials.

(legend continued on next page)
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paired t test across 5 mice). Conversely, it did not affect unisen-

sory auditory choices (Figure 2C), indicating that visual cortex

does not play a substantial role in processing auditory signals

in this task. Finally, bilateral inactivation of visual or parietal

cortex reduced the fraction of choices toward the location of

the visual stimulus in both unisensory visual andmultisensory tri-

als (Figures S5U–S5X).

Inactivating frontal cortex impaired choices based on either

modality with similar strength, suggesting a role in integrating vi-

sual and auditory evidence (Figures 2B–2E). On visual trials, in-

activating frontal cortex had a similar effect as inactivating visual

cortex: it reduced responses to contralateral stimuli (Figure 2B,

as in visual detection tasks53,59,65). However, it also caused a

similar reduction in the responses to contralateral auditory

stimuli (p > 0.05, t test across mice; Figure 2C). In coherent

multisensory trials, frontal inactivation reduced responses to

contralateral stimuli (Figure 2D). On conflict trials, it reduced

the responses to the contralateral stimulus, whichever modality

it came from (Figure 2E). Bilateral inactivation of frontal cortex

slowed responses but did not bias the animal’s choices in either

direction for any stimulus type (Figures S5Q–S5X).

Finally, inactivating lateral sensory cortex strongly impaired vi-

sual choices and weakly impaired auditory choices. It decreased

correct responses to contralateral stimuli whether visual alone

(Figure 2B), auditory alone (Figure 2C), or combined (Figures

2D and 2E) but had a larger effect on visual than auditory choices

(Figures 2B and 2C, p < 0.05, t test across mice). These results

might suggest a multisensory role but might, more simply, arise

from light spreading into both visual and auditory areas: indeed,

because of brain curvature, light likely passes through overlying

tissue before reaching auditory cortex, which is required for

auditory localization.66 Attenuation by this overlying tissue may

explain the weaker effect on auditory choices. The minor effect

of inactivating somatosensory cortex (Figure S4F) may also arise

from light spreading.

The results of these inactivations were well captured by the

additive model. The model accounted for the effects of inactivat-

ing visual cortex via a decrease in the sensitivity for contralateral

visual stimuli vc (Figure 2F), which reduced performance for

contralateral visual stimuli regardless of auditory stimuli (Fig-

ure 2G). Inactivating lateral sensory cortex had a similar effect
(D) As in (B), but for coherent multisensory trials.

(E) As in (B), but for conflict multisensory trials.

(F) As in (B)–(E), but dot color indicates the change in parameters of the additive m

sensitivity to ipsilateral and contralateral contrast; ai and ac, sensitivity to ipsilate

(G) Fit of additive model to trials when a site in visual cortex was inactivated. Dash

cortex were included after reflecting the maps (5 mice, 6,497 trials). Inactivation

(H) As in (G), but for trials when frontal cortex was inactivated (5 mice, 5,612 trials

(I) Change inmultisensory reaction timeswhen visual or frontal cortex was inactiva

5) and the mean across mice. Reaction times are the mean across the medians

truncated for visualization. On coherent trials, inactivating visual or frontal cortex

tivation of visual cortex decreased reaction time while inactivation of frontal co

fects model).

(J) Change in fraction of rightward choices when contralateral visual cortex was i

Inactivation was a 25ms, 25mW laser pulse at different time points. Curves show

binomial confidence intervals. *** indicates intervals where fraction of rightward

(K) As in (J), but for frontal inactivation (451 and 1,291 trials for auditory and visu

(L) As in (I), but for the change in the fraction of timeout trials. On coherent trials, in

conflict trials, only frontal inactivation changed the fraction of timeouts. ***p < 0.
and more weakly decreased contralateral auditory sensitivity

ac (Figures 2F and S4E, p < 0.07, t test across mice). Inactivating

frontal cortex reduced visual and auditory sensitivity by a similar

amount (p > 0.65, t test across mice) and increased bias b to

favor ipsilateral choices (Figures 2F, 2H, and S4G). Themodel re-

vealed that the effects of inactivating visual, lateral, and frontal

cortices were statistically different from each other (Figure S4H).

For example, inactivating frontal cortex reduced sensitivity to

both contralateral and ipsilateral stimuli, but inactivating lateral

sensory cortex only reduced sensitivity to contralateral stimuli

(Figure 2F).

The effect of inactivation on reaction times revealed a differ-

ence between frontal and other cortices. Inactivating frontal cor-

tex delayed responses in all stimulus conditions (Figures 2I and

S5A–S5P). In contrast, the effect of inactivating visual cortex de-

pended on the stimulus condition: responses to contralateral

visual stimuli or coherent contralateral audiovisual stimuli were

delayed, but responses to conflicting stimuli with a contralateral

visual component were accelerated (Figures 2I and S5A–S5H). It

effectively caused the mouse to ignore the contralateral visual

stimulus and respond as on unisensory auditory trials (Figure 1B).

The effects of inactivating the lateral cortex were similar to visual

cortex but did not reach statistical significance. Similar results

were seen in the fraction of timeouts, i.e., trials where the mouse

failed to respond within 1.5 s (Figures 2L and S5I–S5P). Bilateral

inactivation of visual or parietal cortex delayed responses to uni-

sensory visual or coherent multisensory trials, while bilateral

inactivation of frontal cortex delayed responses to all trial types

(Figures S5Q–S5T). These data indicate that inactivating visual

or lateral cortex mimicked the absence of a contralateral stim-

ulus, which may speed or slow reaction times depending on

whether this absence resolves a conflict. They also indicate

that inactivating frontal cortex slows all choices, consistent

with a process of multisensory evidence integration and possibly

also of premotor planning or motor execution.

The critical time window for inactivation was earlier for visual

cortex than for frontal cortex (Figures 2J and 2K). We used

25-ms laser pulses to briefly inactivate visual and frontal cortex

at different times relative to stimulus onset on unisensory trials59

(see STAR Methods). Inactivating right visual cortex significantly

increased the fraction of rightward choices if the laser pulse
odel. b, bias toward ipsilateral choices (relative to inactivation site); vi and vc,

ral and contralateral auditory stimuli.

ed lines: model fit to non-inactivation trials. Trials with inactivation of left visual

significantly changed model parameters (paired t test, p < 0.05).

). Inactivation significantly changed model parameters (paired t test, p < 0.05).

ted contralateral to the visual stimulus. Gray and black lines: individualmice (n =

for each contrast relative to non-inactivation trials. Values above 100 ms were

increased reaction time, with larger effect for frontal. On conflict trials, inac-

rtex caused an increase. *p < 0.05, **p < 0.01, *p < 0.001 (linear mixed-ef-

nactivated on visual (yellow, 519 trials) or auditory (magenta, 1,205 trials) trials.

average over mice smoothed with a 70ms boxcar window. Shaded areas: 95%

choices differs significantly from controls (p < 0.001, Fisher’s exact test).

al conditions).

activation of either visual or frontal cortex significantly increased timeouts. On

001 (linear mixed-effects model).
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began between 70 ms prior and 50 ms after the appearance of a

visual stimulus on the left (p < 0.001), but had no significant effect

at any time after an auditory stimulus (Figure 2J); an impact of

inactivation prior to stimulus onset likely results from continued

suppression of neural activity following laser offset.59 Frontal

inactivation impacted behavior later: 70–110 ms after contr-

alateral visual stimuli and 30–120 ms after contralateral auditory

stimuli (Figure 2K). The earlier critical window for frontal inac-

tivation on auditory trials is consistent with the faster reaction

times on these trials (Figure 1B). However, in both cases, inacti-

vation of frontal cortex had no significant effect >120 ms after

stimulus onset, suggesting that after this time, frontal cortex

plays a limited role in sensory integration. These short inactiva-

tion pulses had no significant effect when stimuli were ipsilateral

to the inactivation or when the laser was targeted outside

the brain.

Together, these results suggest that visual cortex’s role in the

task is to relay visual information to downstream structures

including frontal cortex, which integrates it with auditory informa-

tion from elsewhere to shape themouse’s choice, with this whole

process occurring over �120 ms.

Neurons in frontal area MOs encode stimuli and predict
behavior
The results of frontal inactivation suggest that at least some

neurons in frontal cortex may integrate evidence from both

modalities. To test this hypothesis, we recorded acutely with

Neuropixels probes during behavior (Figures 3A–3D). We re-

corded 14,656 neurons from frontal cortex across 88 probe in-

sertions (56 sessions) from 6 mice (Figures 3A, S6A, and S6B)

divided across the following areas: MOs, orbitofrontal (ORB),

anterior cingulate (ACA), prelimbic (PL), infralimbic (ILA), and

nearby olfactory areas (OLF). These regions exhibited a variety

of neural responses, including neurons that were sensitive to vi-

sual and auditory location (Figures 3B and 3C) and to the

animal’s upcoming choice (Figure 3D).

Among these frontal regions, task information was repre-

sented most strongly in MOs. MOs was the only region able

to predict the animal’s upcoming choice before movement

onset (Figures 3G and S6C) and encoded auditory and visual

stimulus location significantly more strongly than the other re-

gions (Figures 3E and 3F; p < 0.01, linear mixed-effects model;

the difference with ACA did not reach significance). Activity in
Figure 3. Neurons in frontal area MOs encode stimuli and predict beh
(A) Recording locations for cells (black dots, right) overlaid on a flattened cortical

secondary motor cortex (MOs, 3,041 neurons), orbitofrontal (ORB, 5,112), anterio

(B) Top: spike rasters, separated by trial condition, from a neuron sensitive to visu

mouse choice. Dashed line and black points: stimulus onset and movement in

averaged across different visual (left), auditory (center), or choice (right) conditio

(C) As in (B), for a neuron sensitive to auditory spatial location (dʹ = �0.81).

(D) As in (B), for a neuron sensitive to the animal’s choice (dʹ = 2.61).

(E) Top: cross-validated accuracy (relative to a bias model, see STAR Methods) o

from population spiking activity time-averaged from 0 ms to 300 ms after stimulus

decoding accuracy from neurons in regions labeled in (A), or olfactory areas (OLF

equalize numbers across points. ***p < 0.001, **p < 0.01 (R5 sessions from 2 to

decoding accuracy (linear mixed-effects model). Black outlines: statistically sign

(F) As in (E), for decoding of auditory stimulus location (R6 sessions, 3–6 mice).

(G) As in (E), for decoding choices from spiking activity 0–130 ms preceding mov
MOs began to predict the animal’s choice �100 ms before

movement onset (Figure S6E) and was more accurate for neu-

rons more anterior or lateral within MOs (Figure S6F). Further-

more, choice decoding from MOs activity was more accurate

on sessions with higher behavioral performance (p < 0.05,

linear mixed-effects model; Figure S6F), suggesting a link be-

tween MOs choice coding and behavioral engagement. Anal-

ysis of single cells yielded results consistent with population

decoding: MOs neurons better discriminated stimulus location

and choice than neurons of all other regions (Figures S6G–

S6H; p < 0.05, linear mixed-effects model; differences

with ACA and PL did not reach significance for visual location).

These observations were robust to the correlation between

stimuli and choices: even when controlling for this correlation,

MOs still had the largest fraction of neurons with significant

coding of stimulus location or pre-movement choice (Figures

S6I–S6J). Once movements were underway, however, we

could decode their direction from multiple regions, consistent

with observations that ongoing movements are encoded

throughout the brain68,69 (Figure S6D).
Frontal area MOs integrates task variables additively
Given the additive effects of visual and auditory signals on

behavior, we asked whether these signals also combine

additively in MOs. To analyze MOs responses to combined au-

diovisual stimuli during behavior, we used an ANOVA-style

decomposition into temporal kernels.70 We focused on audiovi-

sual trials of a single contrast so we could define binary variables

ai; vi; ci = ±1, encoding the laterality (left vs. right) of auditory

stimuli, visual stimuli, and choices. The population firing rate vec-

tor F iðtÞ, on trial i at time t after stimulus onset, decomposed as

the sum of 6 temporal kernels:

F iðtÞ = BðtÞ+aiAðtÞ+ viVðtÞ+ aiviNðtÞ+Mðt � tiÞ+ ciDðt � tiÞ
(Equation 5)

Here, B is the mean stimulus response averaged across

stimuli, A and V are the additive effects of auditory and visual

stimulus location, and N is a potential non-additive interaction

between them. Finally,M is a kernel for the mean effect of move-

ment (regardless of direction and relative to the time ti of move-

ment onset on trial i) and D is the differential effect of movement

direction (right minus left). To test for additivity, we compared the
avior
map (using the Allen Common Coordinate Framework67), showing locations in

r cingulate (ACA, 727), prelimbic (PL, 1,332) and infralimbic (ILA, 1,254) areas.

al spatial location (dʹ = 1.85). Red/blue rasters: trials with a rightward/leftward

itiation. Bottom: peri-stimulus time histogram (PSTH) of the neural response,

ns. Trials are not balanced; choice and stimulus location are correlated.

f a support vector machine decoder trained to predict visual stimulus location

onset. Accuracies 0 and 1 represent chance and optimal performance. Points:

, 2,068 neurons), for one experimental session. Neurons were subsampled to

5 mice for each region, one-sided t test). Bottom: inter-regional comparison of

ificant difference. Dot size: significance level.

ement (R7 sessions, 3–6 mice).
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Figure 4. Frontal area MOs encodes task variables additively

(A) Kernels from fitting the additive neural model to an example neuron. Dashed lines: stimulus onset (left) ormovement onset (right).B, mean stimulus response;A

and V , additive effects of auditory and visual stimulus location;M, mean effect of movement (relative to ti , movement onset time on trial i); D, differential effect of

movement direction (right minus left). The non-additive kernel N was set to 0.

(B) Cross-validated model fits to average neural activity in audiovisual conditions for the neuron from (A). Coherent trials with incorrect responses were too rare to

include. Cyan and orange lines: predictions of additive (N = 0) and full models. Black line: test-set average responses. Dashed lines: stimulus onset.

(C) Prediction error (see STAR Methods) across all neurons for additive and full models. Arrow indicates example cell from (A and B). The additive model has a

smaller error (p = 0.037, linear mixed-effects model, 2,183 cells, 5 mice). Top 1% of errors were excluded for visualization, but not analyses.

(D–F) As in (A)–(C), but for neural activity during passive stimulus presentation, using only sensory kernels. In (F), p < 10�10 (2,509 cells, 5 mice, linear mixed-

effects model).

(G) Encoding of visual vs. auditory stimulus preference (time-averaged kernel amplitude for V vs. A) for each cell. There was no significant correlation between V

andA. p > 0.05 (2,509 cells, Pearson correlation test). Red/blue: cells recorded in right/left hemisphere. Color saturation: fraction of variance explained by sensory

kernels.

(H) Discrimination time (see STAR Methods) relative to stimulus onset during passive conditions. Auditory Right-Left neurons (magenta, n = 59) discriminated

stimulus location earlier than Visual Right-Left neurons (gold, n = 36). Auditory On-Off neurons (sensitive to presence, but not necessarily location, gray, n = 82)

discriminated earliest, even compared to Visual On-Off neurons (n = 36, black). Points: individual neurons. Bars: standard error. **p < 0.01, ***p < 0.001 (Mann–

Whitney U test).
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cross-validated performance of this full model against an addi-

tive model where N = 0.

The results were consistent with additive integration of visual

and auditory signals. The additive model of MOs responses out-

performed the full model with interactions between visual and

auditory stimuli (Figures 4A–4C), as well as an alternative full

model with interactions between stimuli and movement (Fig-

ure S7A). (Better performance of the additive model reflects

over-fitting of the full model, whose parameters are a superset

of the additive model’s.) Similar results were seen during passive

presentation of the task stimuli, when sensory responses could

not be confounded by movement (Figures 4D–4F and S7T–S7V).

MOs neurons provided a mixed representation of visual and

auditory stimulus locations but encoded the two modalities

with different time courses. Similar to the mixed multisensory

selectivity observed in the parietal cortex of rat29 and primate,6

the auditory and visual stimulus preferences of MOs neurons

were neither correlated nor lateralized: cells in either hemisphere

could represent the location of auditory or visual stimuli with a

preference for either location and could represent the direction
8 Neuron 111, 1–16, August 2, 2023
of the subsequent movement with a preference for either direc-

tion (Figures 4G, S7C–S7E, S7R, and S7S). We could not detect

a significant correlation of kernel size with recording location in

MOs, although there was a trend toward larger choice kernels

in anterior and lateral regions (Figures S7F–S7Q). Neurons that

responded to one modality, however, also tended to respond

to the other, as evidenced by a weak correlation in the absolute

sizes of the auditory and visual kernels (Figure S7B). Neverthe-

less, representations of auditory and visual stimuli had different

time courses: neurons could distinguish the presence and loca-

tion of auditory stimuli earlier than for visual stimuli (Figure 4H).

This is consistent with the more rapid behavioral reactions to

auditory stimuli (Figure 1B) and the earlier critical window for

MOs inactivation on unisensory auditory than visual trials

(Figures 2J and 2K). Indeed, the earliest times in which MOs en-

coded visual or auditory stimuli (Figure 4H)matched the times for

which MOs inactivation impacted behavioral performance

(Figures 2J and 2K). This delay between visual and auditory sig-

nals resembles the delay previously observed between visual

and vestibular signals.38



A B Figure 5. Audiovisual integration in MOs

develops through learning

(A) Cumulative histogram of absolute visual dis-

criminability index (dʹ) scores for MOs neurons in

naive mice (n = 2,700), trained mice (n = 2,956),

and shuffled data. Training enriches the propor-

tion of spatially sensitive neurons (**p < 0.01,

Welch’s t test). Naive mouse data was not signif-

icantly distinct from shuffled (p > 0.05, Welch’s t

test). Arrows: 95th percentile for each category.

(B) As in (A), but for auditory stimuli. Training

enriches the proportion of spatially sensitive

neurons, although naive mouse data was signifi-

cantly distinct from shuffled data (**p <0:01,

Welch’s t test, n = 2,698/2,946 neurons for naive/

trained mice).
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MOs encoded information about auditory onset (regardless of

sound location) more strongly and earlier than information about

visual onset or the location of either stimulus (Figures 4H and

S7W). This may explain why mice exhibit auditory dominance

in multisensory conflict trials in a detection task18,19 but not in

our localization task.

Multisensory signals develop in MOs after task training
Neural populations of MOs encoded auditory and visual location

more strongly in task-proficient mice (Figures 5A and 5B). We re-

corded the responses of 2,702MOs neurons to the task stimuli in

4 naive mice during passive conditions with no instructed move-

ments and compared their activity to that previously character-

ized in trained mice. MOs encoding of visual stimulus location

was significantly higher in trained mice than naive mice

(**p < 0.01, Welch’s t test). In naive mice, individual MOs neurons

showed no coding of visual position: their dʹ index (absolute

mean difference of firing rates between stimulus conditions

divided by mean trial-to-trial SD) was not significantly different

from a shuffled control (Figure 5A). In naive mice, MOs did

encode auditory location (p < 0.01, Welch’s t test), but this en-

coding grew stronger after task training (Figure 5B, p < 0.01,

Welch’s t test). We conclude that training enhances sensory re-

sponses in MOs, particularly visual responses.

An accumulator applied to MOs activity reproduced
decisions
Given that the MOs population code resembled the animals’

behavior in multiple ways, including the additive coding of visual

and auditory stimuli and the earlier auditory responses, we next

asked if the representation of multisensory task stimuli in MOs

could explain the properties of the animals’ choices. We consid-

eredanaccumulatormodel thatmakeschoicesbasedon thestim-

ulus representation inMOs (Figures6Aand6B).To isolate thestim-

ulus representation and avoid the confound of movement

encoding inMOs,weusedpassive stimulus responses andgener-

atedsurrogate populationspike trainsxðtÞbyselecting (fromall re-

cordings)MOs neurons encoding the location of at least one of the

sensory stimuli. These spike trains were fed into an accumulator

model1,37,71–73; theywere scaled by aweight vectorw and linearly

integrated over time to produce a scalar decision variable dðtÞ:
dðtÞ = dðt � 1Þ+w$xðtÞ (Equation 6)

The model chooses left or right when dðtÞ crosses one of two

decision boundaries placed at ± 1.

Although the model parameters were fit independently of

mouse behavior, the model matched the average behavior of

each mouse, as long as it was applied to MOs activity recorded

in trained mice. Given an MOs representation xðtÞ, we found the

weight vector w that produced the fastest and most accurate

choices possible (see STAR Methods). The model reproduced

the different behavioral reaction times for different stimulus

types: faster in auditory and coherent trials, and slower in visual

and conflict trials (Figure 6D; cf. Figure 1B). Furthermore, as

observed with mice, the model integrated multisensory stimuli

additively (Figure 6E; cf. Figure 1G). In contrast, an accumulator

model trained on MOs representations in naive mice failed to

reproduce mouse behavior, with no significant difference in

model performance between shuffle and test data (p > 0.05;

Figures 6C and 6F). These results suggest that behavioral fea-

tures of the responses, such as the different reaction times for

auditory and visual stimuli and the additivity of visual and audi-

tory evidence, reflect features in the MOs population code that

appear only after the task has been learned.

The accumulator model even predicted the outcome of inacti-

vation. Suppressing MOs neurons preferring left visual stimuli in

the model reproduced the effects of inactivating right visual cor-

tex (Figure 6G; cf. Figure 2G). However, the simple accumulator

model could not reproduce the rightwardbias observedwith right

MOs inactivation (Figure S7X; cf. Figure 2H) because MOs neu-

rons preferring either stimulus position are found equally in both

hemispheres (Figures S7C–S7E). To reproduce these effects,

wemade theadditional assumption that theMOsneuronsprojec-

ting to the downstream integrator from a given hemisphere were

those preferring contralateral stimuli.74 In practice, this means

that weights from neurons in the left vs. right hemisphere must

be positive vs. negative. This refinedmodel predicted the lateral-

ized effect of MOs inactivation (Figure 6H). These results support

the hypothesis that MOs neurons learn to additively integrate ev-

idence from visual and auditory cortices, producing a population

representation that is causally and selectively sampled by a

downstream circuit that makes decisions.
Neuron 111, 1–16, August 2, 2023 9
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Figure 6. An accumulator applied to MOs activity in trained mice reproduced decisions

(A) Top: population spike train rasters for a single trial, colored according to the fitted weight for that neuron. Red and blue neurons push the decision variable, dt ,

toward the rightward or leftward decision boundary. Vertical dashed line: stimulus onset. Population activity was created from passive recording sessions inMOs

of trainedmice.Middle: evolution of the decision variable over this trial. Red/blue dashed lines: rightward/leftward decision boundaries. Bottom: decision variable

trajectory for individual unisensory visual trials with 80% rightward contrast (thin) and their mean (thick).

(B) Mean decision variable trajectory for visual-only (top), auditory-only (middle), and multisensory (bottom) stimulus conditions.

(C) As in (B), but for naive mice.

(D) Median reaction times for different stimulus types, relative tomean across stimulus types, for mouse behavior (gray, n = 17; cf. Figure 1B) and the accumulator

model fit to MOs activity in trained and naive mice (solid and dashed black lines).

(E) Mean behavior of the accumulator with input spikes from trained mice (large circles). Small circles represent mouse performance (n = 17; cf. Figure 1G). Solid

lines: fit of the additive model to the accumulator model output. The accumulator model fits mouse behavior better than shuffled data (p < 0.01, shuffle test, see

STAR Methods).

(F) As in (E), but for accumulator with input spikes from naive mice. There is no significant difference between the accumulator model and shuffled data (p > 0.05).

(G) Simulation of right visual cortex inactivation, plotted as in (E). Activity of visual-left-preferring cells was reduced by 60%. Small circles: mean behavior from

visual-cortex-inactivated mice (5 mice; cf. Figure 2G). The accumulator model fits mouse behavior better than shuffled data (p < 0.01).

(legend continued on next page)
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DISCUSSION

We found that mice localize stimuli by integrating auditory and vi-

sual cues additively and that this additive integration relies on

frontal area MOs. Inactivation of frontal cortex impaired audiovi-

sual decisions, especially when the inactivation targeted MOs.

Recordings across frontal cortex revealed that MOs has the

strongest representations of task variables. Its representations

of visual and auditory signals persisted even when mice were

not performing the task, but emerged largely after training.

MOs neurons combined visual and auditory location signals

additively, and an accumulator model applied to MOs activity re-

corded in passive conditions in trained mice predicts the direc-

tion and timing of behavioral responses.

Taken together, our findings implicate MOs as a critical

cortical region for integration of evidence from multiple modal-

ities. This is consistent with a general role for rodent MOs in

sensorimotor transformations: this frontal region has been linked

to multiple functions,75 including flexible sensory-motor map-

ping,76,77 perceptual decision-making,59,60,78–81 value-based

action selection,82 and exploration-exploitation trade-off in vi-

sual and auditory behaviors58; furthermore, homologous regions

of frontal cortex can encode multisensory information in

primates.39

Sensory representations in rodent MOs have been seen to

evolve with learning in unisensory visual tasks,83,84 consistent

with our observations. Our results suggest that the circuits

responsible for multisensory decisions resemble those for uni-

sensory decisions: sensory information relevant for the decision

is relayed to frontal cortex, where it is integrated and used to

guide action. When mice are trained on a multisensory task,

MOs learns to represent the multiple modalities, allowing the

stimuli to control choices. The weak but significant MOs repre-

sentation of auditory stimuli before task training might reflect

an innate circuit for orienting towards localized sounds.

The effects of inactivation on responses and reaction times to

bothmodalitieswere strongestwhen the laserwasaimedat ante-

riorMOs. These inactivationsmay affect wide regions, over 1mm

from the laser’s location.59,63,64 Nevertheless, if the critical region

for multisensory processing were some surface area other than

anterior MOs, one would see a stronger effect targeting the laser

in that area. It is also possible that targeting MOs inactivates re-

gions below it, such as ACA or ORB. However, electrode record-

ings revealed that these regions had no neural correlates of up-

coming choice and weaker correlates of stimulus location (the

difference with ACA did not reach significance). We therefore

conclude that MOs is an important center for transforming visual

and auditory stimuli into motor actions, operating either alone or

in parallel with other circuits. It may be part of a distributed

cortical and subcortical circuit for integrating sensory evidence,

choosing an action plan, and planning and executing

movements.

The circuit for audiovisual integration might include the border

region between primary visual region (VISp) and primary auditory
(H) Simulation of right MOs inactivation, plotted as in (E). Activities of neurons

weights, and right-hemisphere activity was reduced by 60% before fitting. Sma

Figure 2H). The accumulator model fits mouse behavior better than shuffled data
region (AUDp) (lateral sensory cortex), where inactivations

affected both visual and auditory choices. However, our data

cannot distinguish whether this reflects multisensory integration

or simply lateral spread of the inactivation to both sensory

cortices. If it is multisensory, it plays a different role from MOs:

inactivating it had weaker effects (particularly on auditory stimuli,

as might be expected if the effect arose from diffusion of light

through the brain to underlying auditory cortex) and did not affect

reaction time. Our data also cannot speak to the role in audio-

visual integration of cortical areas below the surface (such as

temporal association areas,85 entorhinal area, or perirhinal

area). However, we can conclude that the role of parietal cortex

in this task is purely visual. This might appear to contradict

previous work implicating parietal cortex in multisensory

integration4,6,7,18,29–36,86 or showing multisensory activity in pri-

mary sensory cortices.41–50 However, our finding agrees with ev-

idence that parietal neurons can encode multisensory stimuli

without being causally involved in a task.29,51,52,87

We hypothesize that the causal role of visual and auditory

cortices in this task is unimodal and that these cortices relay their

unimodal signals to other regions (possibly via unimodal higher

sensory areas88) where the two information streams are inte-

grated.86,87,89 We have confirmed this hypothesis for visual

cortex but not for auditory cortex. Doing so would require better

access to lateralized areas.

An additive integration strategy is optimal when the probability

distributions of visual and auditory signals are conditionally

independent given the stimulus location,1 but it may be a useful

heuristic90 in a broader set of circumstances. In fact, in our task

independence holds only approximately (see STAR Methods,

Figure S8). Nevertheless, additive integration is a simple compu-

tation2 that does not require learning detailed statistics of the

sensory world and performs close to the optimum in many

situations.

The additive model we observe in mice derives from Bayesian

integration, the predominantly accepted integration strategy in hu-

mans and other animals.3–13 However, there is a distinction be-

tween the model and some previous work. Typically, previous

studies fit psychometric curves based on a cumulative Gaussian

function,3,13which necessitates using lapse rates.58Our approach

instead startswith a conditional independence assumption, which

implies thatpsychometriccurvesarea logistic functionapplied toa

sumof evidence from the twomodalities (seeSTARMethods, Fig-

ureS8).Ourmodel doesnot speak to the shapeor linearity of these

evidence functions. We found empirically that power functions of

contrast approximate the data well, but this was not a necessary

assumption (see STAR Methods, Figure S8).

Our finding of additive integration might appear to contradict

observations from an audiovisual detection task, which sug-

gested that mice were auditory dominant.18,19 However, the

discrepancy might arise from differences in the neural represen-

tation of stimulus onsets vs. locations. Our task required localiza-

tion, and the relevant auditory and visual signals combined

additively in MOs, with temporal differences that explain the
in left and right hemispheres were constrained to have positive and negative

ll circles: mean behavior from MOs-inactivated mice (5 mice, small circles; cf.

(p < 0.01).
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Figure 7. Diagram of hypothesized audiovisual integration pathway

through cortex

Our data suggest that visual and auditory unisensory information are conveyed

via visual (VIS) and auditory (AUD) sensory cortices to MOs, where a bilateral

representation results from interhemispheric connections. A downstream

integrator, distributed over multiple brain regions, possibly including MOs it-

self, accumulates MOs activity, with a biased sampling of neurons responding

to contralateral stimuli. An appropriate action is then determined by an inte-

gration to bound mechanism. Alternative pathways from visual and auditory

cortices appear to be able to compensate for the absence ofMOs activity (e.g.,

during bilateral inactivation).
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mice’s earlier reactions to auditory stimuli. However, we also

saw that neural signals encoding auditory onset were stronger

and substantially earlier than neural signals encoding either vi-

sual onset or stimulus location from either modality. These

strong and early auditory onset signals might dominate behavior

in a detection task.18 In other words, mice might integrate audio-

visual signals additively when tasked with localizing a source but

be dominated by auditory cues when tasked with detecting the

source’s presence.

In summary, our data suggest that MOs neurons learn to addi-

tively integrate evidence from visual and auditory stimuli, pro-

ducing a population representation that persists even outside

the task and is suitable in the task for guiding a downstream cir-

cuit that makes decisions by integration-to-bound. This evi-

dence may be conveyed to MOs via sensory cortices and then

fed to downstream circuits that accumulate and threshold activ-

ity to select an appropriate action (Figure 7). Based on results in a

unisensory task,95 we suspect the downstream integrator is a

loop that includes MOs itself, together with basal ganglia and

midbrain. As bilateral MOs inactivation slowed decision-making,

but did not otherwise change behavior, we hypothesize that

redundant circuitry can compensate for MOs when it is silenced.

The sensory code we observed in MOs has some apparently

paradoxical features, but these would not prevent its efficient

use by a downstream accumulator. First, a neuron’s preference

for visual location showed no apparent relation to its preference

for auditory location, consistent with reports from multisensory

neural populations in primates6,37 and rats.29 Such ‘‘mixed

selectivity’’ might allow downstream circuits to quickly learn to

extract relevant feature combinations.91–94 Neurons encoding

incoherent stimulus locations would not prevent a downstream

decision circuit from learning to respond correctly; they could

be ignored in the current task, but they would provide flexibility

should task demands change. Second, although an approxi-
12 Neuron 111, 1–16, August 2, 2023
mately equal number of MOs neurons in each hemisphere

preferred left and right stimuli of either modality, inactivation of

MOs caused a lateralized effect on behavior. This apparent

contradiction could be resolved if a specific subset of cortical

neurons showed lateral bias74 or if the downstream decision cir-

cuit weighted MOs neurons in a biased manner. Indeed,

midbrain neurons encoding choices in a similar task are highly

lateralized,95 and the subcortical circuits connecting MOs to

midbrain stay largely within each hemisphere. Indeed, when

we constrained the accumulator model so that MOs neurons

only contribute to contralateral choices, we reproduced the lat-

eralized effects of MOs inactivation. Whether this downstream

bias exists, and whether it depends on specific neural subtypes,

is a question for future studies.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT

DETAILS

B Mice

d METHOD DETAILS

B Terminology

B Surgery

B Audiovisual behavioral task

B Optogenetic inactivation

B Neuropixels recordings

B Passive stimulus presentation recordings

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Statistics

B Behavioral quantification

B Video motion energy analysis

B Wheel movement during active vs. passive conditions

B Psychometric modeling

B Quantifying effects of optogenetic inactivation on

choice

B Quantifying effects of optogenetic inactivation on

model parameters

B The effect of inactivation on reaction time, fraction of

timeout/slow trials, and rightward choices

B Estimating firing rate

B Decoding stimuli and choices from population activity

B Quantifying ramping of choice-related activity in MOs

B Combined-conditions choice/stimulus probability

analysis

B Modeling neural activity

B Lateralization of stimulus and movement activity

B Quantifying stimulus and movement activity as a func-

tion of location within MOs

B Quantifying single-neuron discrimination time

B Quantifying single-neuron discriminability index



ll
OPEN ACCESSArticle

Please cite this article in press as: Coen et al., Mouse frontal cortex mediates additive multisensory decisions, Neuron (2023), https://doi.org/10.1016/
j.neuron.2023.05.008
B Accumulator model

B Optimally combining independent visual and auditory

signals
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

neuron.2023.05.008.

ACKNOWLEDGMENTS

We thank Michael Krumin, Peter Zatka-Haas, Andrew J. Peters, Max Hunter,
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36. Avillac, M., Denève, S., Olivier, E., Pouget, A., and Duhamel, J.-R. (2005).

Reference frames for representing visual and tactile locations in parietal

cortex. Nat. Neurosci. 8, 941–949. https://doi.org/10.1038/nn1480.

37. Hou, H., Zheng, Q., Zhao, Y., Pouget, A., and Gu, Y. (2019). Neural

Correlates of Optimal Multisensory Decision Making under Time-

Varying Reliabilities with an Invariant Linear Probabilistic Population

Code. Neuron 104, 1010–1021.e10. https://doi.org/10.1016/j.neuron.

2019.08.038.

38. Zheng, Q., Zhou, L., andGu, Y. (2021). Temporal synchrony effects of op-

tic flow and vestibular inputs on multisensory heading perception. Cell

Rep. 37, 109999. https://doi.org/10.1016/j.celrep.2021.109999.

39. Gu, Y., Cheng, Z., Yang, L., DeAngelis, G.C., and Angelaki, D.E. (2016).

Multisensory Convergence of Visual and Vestibular Heading Cues in

the Pursuit Area of the Frontal Eye Field. Cereb. Cortex 26, 3785–3801.

https://doi.org/10.1093/cercor/bhv183.

40. Bimbard, C., Sit, T.P.H., Lebedeva, A., Reddy, C.B., Harris, K.D., and

Carandini, M. (2023). Behavioral origin of sound-evoked activity in mouse

visual cortex. Nat. Neurosci. 26, 251–258. https://doi.org/10.1038/

s41593-022-01227-x.

41. Iurilli, G., Ghezzi, D., Olcese, U., Lassi, G., Nazzaro, C., Tonini, R., Tucci,

V., Benfenati, F., and Medini, P. (2012). Sound-Driven Synaptic Inhibition

in Primary Visual Cortex. Neuron 73, 814–828. https://doi.org/10.1016/j.

neuron.2011.12.026.

42. Meijer, G.T., Montijn, J.S., Pennartz, C.M.A., and Lansink, C.S. (2017).

Audiovisual Modulation in Mouse Primary Visual Cortex Depends on

Cross-Modal Stimulus Configuration and Congruency. J. Neurosci. 37,

8783–8796. https://doi.org/10.1523/JNEUROSCI.0468-17.2017.
14 Neuron 111, 1–16, August 2, 2023
43. Ibrahim, L.A., Mesik, L., Ji, X.Y., Fang, Q., Li, H.F., Li, Y.T., Zingg, B.,

Zhang, L.I., and Tao, H.W. (2016). Cross-Modality Sharpening of

Visual Cortical Processing through Layer-1-Mediated Inhibition and

Disinhibition. Neuron 89, 1031–1045. https://doi.org/10.1016/j.neuron.

2016.01.027.

44. Bizley, J.K., and King, A.J. (2009). Visual influences on ferret auditory cor-

tex. Hear. Res. 258, 55–63. https://doi.org/10.1016/j.heares.2009.

06.017.

45. Bizley, J.K., and King, A.J. (2008). Visual–auditory spatial processing in

auditory cortical neurons. Brain Res. 1242, 24–36. https://doi.org/10.

1016/j.brainres.2008.02.087.

46. Atilgan, H., Town, S.M., Wood, K.C., Jones, G.P., Maddox, R.K., Lee,

A.K.C., and Bizley, J.K. (2018). Integration of Visual Information in

Auditory Cortex Promotes Auditory Scene Analysis through

Multisensory Binding. Neuron 97, 640–655.e4. https://doi.org/10.1016/

j.neuron.2017.12.034.

47. Ghazanfar, A.A., and Schroeder, C.E. (2006). Is neocortex essentially

multisensory? Trends Cogn. Sci. 10, 278–285. https://doi.org/10.1016/

j.tics.2006.04.008.

48. Driver, J., and Noesselt, T. (2008). Multisensory Interplay Reveals

Crossmodal Influences on ‘Sensory-Specific’ Brain Regions, Neural

Responses, and Judgments. Neuron 57, 11–23. https://doi.org/10.

1016/j.neuron.2007.12.013.

49. Meredith, M.A., and Allman, B.L. (2015). Single-unit analysis of somato-

sensory processing in the core auditory cortex of hearing ferrets. Eur.

J. Neurosci. 41, 686–698. https://doi.org/10.1111/ejn.12828.

50. Kayser, C., Petkov, C.I., and Logothetis, N.K. (2008). Visual Modulation of

Neurons in Auditory Cortex. Cereb. Cortex 18, 1560–1574. https://doi.

org/10.1093/cercor/bhm187.

51. Gu, Y., DeAngelis, G.C., and Angelaki, D.E. (2012). Causal Links between

Dorsal Medial Superior Temporal Area Neurons and Multisensory

Heading Perception. J. Neurosci. 32, 2299–2313. https://doi.org/10.

1523/jneurosci.5154-11.2012.

52. Licata, A.M., Kaufman, M.T., Raposo, D., Ryan, M.B., Sheppard, J.P.,

and Churchland, A.K. (2017). Posterior Parietal Cortex Guides Visual

Decisions in Rats. J. Neurosci. 37, 4954–4966. https://doi.org/10.1523/

jneurosci.0105-17.2017.

53. Burgess, C.P., Lak, A., Steinmetz, N.A., Zatka-Haas, P., Bai Reddy, C.,

Jacobs, E.A.K., Linden, J.F., Paton, J.J., Ranson, A., Schröder, S.,
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inhibitory interneurons (Ai32 [Jax #012569, RRID:IMSR_JAX: 012569] x PV-Cre [Jax #008069, RRID:IMSR_JAX: 008069]) or wild type

C57BL/6J [Jackson Labs, RRID:IMSR_JAX:000664]. 17 mice contribute to behavioral data (Figure 1), 5 mice contribute to optoge-

netic inactivation data (Figure 2), and 6/4mice contribute to electrophysiological recordings in trained/naive mice (Figures 3, 4, 5, and

6). Behavioral data (Figure 1) comprised both sessions without any optogenetic inactivation and non-inactivation trials within

optogenetic experiments. Mice were either single-housed or co-housed in individually ventilated cages at the Biological Services

Unit in University College London.

METHOD DETAILS

Terminology
Here, we define some terms used throughout the methods and manuscript. A ‘‘stimulus condition’’ refers to a particular combination

of auditory and visual stimuli; for example, a visual stimulus of 40% contrast on the left and an auditory stimulus presented on the

right. A ‘‘stimulus type’’ refers to a category that may comprise several stimulus conditions. We define five different stimulus types:

unisensory auditory, unisensory visual, coherent, conflict, and neutral. ‘‘Unisensory auditory’’ trials are when an auditory stimulus is

presented on the left or right, and contrast is zero (gray screen). ‘‘Unisensory visual’’ trials are when a stimulus of any contrast greater

than zero is presented on the left or right, and the auditory stimulus is presented in the center (during behavior) or is absent (during

passive conditions). ‘‘Coherent’’ trials are when a visual stimulus with non-zero contrast is presented on the same side as an auditory

stimulus. ‘‘Conflict’’ trials are when a visual stimulus with non-zero contrast is presented on a different side from an auditory stimulus.

‘‘Neutral’’ trials are when the visual contrast is zero and the auditory stimulus is presented in the center. We refer to a single

experimental recording (whether purely behavior, or combined with optogenetic inactivation or electrophysiology) as a ‘‘session.’’

Sessions can vary in duration and number of trials. Throughout the manuscript, ‘‘t test’’ indicates a two-sided t test unless otherwise

specified. When referring to inactivation we use the term ‘‘site’’ to refer to a single target location (of which there were 52 in total) on

dorsal cortex and ‘‘region’’ to refer to a collection of sites (3 sites in each case) in visual, lateral, somatosensory, or frontal cortex.

Surgery
Abrief (around 1 h) initial surgery was performed under isoflurane (1–3% inO2) anesthesia to implant a steel headplate (approximately

253 33 0.5mm, 1 g) and, in most cases, a 3D-printed recording chamber. The chamber comprised two pieces of opaque polylactic

acid which combined to expose an area approximately 4 mm anterior to 5 mm posterior to bregma, and 5 mm left to 5 mm right,

narrowing near the eyes. The implantation method largely followed established methods60 and has been previously described.98

In brief, the dorsal surface of the skull was cleared of skin and periosteum. The lower part of the chamber was attached to the skull

with cyanoacrylate (VetBond; World Precision Instruments) and the gaps between chamber skull were filled with L-type radiopaque

polymer (Super-Bond C&B, Sun Medical). A thin layer of cyanoacrylate was applied to the skull inside the cone and allowed to dry.

Thin layers of UV-curing optical glue (Norland Optical Adhesives #81, Norland Products) were applied inside the cone and cured until

the exposed skull was covered. The head plate was attached to the skull over the interparietal bone with Super-Bond polymer. The

upper part of the cone was then affixed to the headplate and lower cone with a further application of polymer. After recovery, mice

were treated with carprofen for three days, then acclimated to handling and head-fixation before training.

Audiovisual behavioral task
The two-alternative forced choice task design was an extension of a previously described visual task.53 It was programmed in Sig-

nals, part of the RigboxMATLAB package.96 Mice sat on a plastic apparatus with their forepaws on a rigid, rubber Lego wheel affixed

to a rotary encoder (Kubler 05.2400.1122.0360). A plastic tube for delivery of water rewards was placed near the subject’s mouth.

Visual stimuli were presented using three computer screens (Adafruit, LP097QX1), arranged at right angles to cover ± 135� az-
imuth and ± 45� elevation, where 0� is directly in front of the subject. Each screen was roughly 11 cm from the mouse’s eyes at its

nearest point and refreshed at 60 Hz. Intensity values were linearized53 with a photodiode (PDA25K2, Thor labs). The screens were

fitted with Fresnel lenses (Wuxi Bohai Optics, BHPA220-2-5) to ameliorate reductions in luminance and contrast at larger viewing

angles, and these lenses were coated with scattering window film (‘frostbite’, The Window Film Company) to reduce reflections.

Visual stimuli were flashing vertical Gabors presented with a 9� Gaussian window, spatial frequency 1/15 cycles per degree, vertical

position 0� (i.e. level with the mouse) and phase randomly selected on each trial. Stimuli flashed at a constant rate of 8Hz, with each

presentation lasting for � 50 ms (with some jitter due to screen refresh times).

Auditory stimuli were presented using an array of 7 speakers (102-1299-ND, Digikey), arranged below the screens at 30� azimuthal

intervals from �90� to +90� (where �90�/+90� is directly to the left/right of the subject). Speakers were driven with an internal sound

card (STRIX SOAR, ASUS) and custom 7-channel amplifier (http://maxhunter.me/portfolio/7champ/). The frequency response of

each speaker was individually estimated in situ with white noise playback recorded with a calibrated microphone (GRAS 40BF

1/400 Ext. Polarized Free-field Microphone). For each speaker, a compensating filter was generated to flatten the frequency response

using the Signal Processing Toolbox inMATLAB. Throughout all sessions, we presented white noise at� 50 dbSPL to equalize back-

ground noise between different training and experimental rigs.

Auditory stimuli were 50 ms pulses of filtered pink noise (8–16kHz, 75–80 dbSPL), with 16ms sinusoidal onset/offset ramps. To

ensure mice did not entrain to any residual difference in the frequency response of the speakers, auditory stimuli were further
e2 Neuron 111, 1–16.e1–e13, August 2, 2023
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modulated on each trial by a filter selected randomly from 100 pre-generated options, which randomly amplified and suppressed

different frequency components within the 8–16kHz range. As with visual stimuli, sound pulses were presented at a rate of 8Hz.

On multisensory trials, the modulation of visual and auditory stimuli was synchronized, but software limitations and hardware jitter

resulted in visual stimuli preceding auditory stimuli by 10 ± 12 ms (mean ± SD).

A trial was initiated after the subject held the wheel still for a short quiescent period (duration uniformly distributed between 0.1 and

0.25 s on each trial; Figure 1A). Mice were randomly presented with different combinations of visual and auditory stimuli (Figure S1A).

Visual stimuli varied in azimuthal position (�60� or +60�) and contrast (0%, 10%, 20%, 40%, and 80%, and also 6% in a subset of

mice). On unisensory auditory trials, contrast was zero (gray screen). Auditory stimuli varied only in azimuthal position: �60�, 0�,
or +60�; on unisensory visual trials, auditory stimuli were positioned at 0�. A small number of ‘‘neutral trials’’ had zero visual contrast

and an auditory stimulus at 0�. The ratio of unisensory visual/unisensory auditory/multisensory coherent/multisensory conflict/neutral

trials varied between sessions but was � 10/10/5/5/1, and stimulus side was selected randomly on each trial. When a mouse was

trained with 5 auditory azimuth locations (Figures S1K–S1L), the additional azimuths were �30� and +30�. A central auditory cue

was chosen, rather than an absence of auditory stimuli, to avoid the auditory stimulus acting as a ‘‘trial onset’’ cue. However, for

experiments with bilateral inactivation (Figures S5Q–S5X), this central auditory stimulus was removed to ensure that the effects of

inactivating posterior parietal cortex on visual trials could not be attributed to a change in perception of this auditory cue.

After stimulus onset there was a 500ms open-loop period, during which the subject could turn the wheel without penalty, but stim-

uli were locked in place and rewards could not be earned. This period was included to disambiguate sensory responses from wheel

movement—as stimulus andwheel movement are perfectly correlated during the closed loop period. Themice nevertheless typically

responded during this open-loop period (Figure S1F). At the end of the open-loop period, an auditory Go cue was delivered through

all speakers (10 kHz pure tone for 0.1 s) and a closed-loop period began in which the stimulus position (visual, auditory, or both)

became coupled to movements of the wheel. Wheel turns in which the top surface of the wheel was moved to the subject’s right

led to rightward movements of stimuli on the speaker array and/or screen, that is, a stimulus on the subject’s left moved toward

the central screen. For visual or auditory stimuli, the position updated at the screen refresh rate (60Hz) or the rate of stimulus presen-

tation (8Hz). In trials, where auditory stimuli were presented at 0�, the auditory stimulus did not move throughout the trial. A left or right

turn was registered when the wheel was turned by an amount sufficient to move the stimulus by 60� in either azimuthal direction (�
30� of wheel rotation, although this varied across mice/sessions); if this had not occurred within 1 s of the auditory Go cue, the trial

was recorded as a ‘‘timeout.’’ On unisensory visual, unisensory auditory, and multisensory coherent trials, the subject was rewarded

for moving the stimulus to the center. If these trials ended with an incorrect choice, or a timeout, then the same stimulus conditions

were repeated up to a maximum of 9 times. In neutral and conflicting multisensory trials, left and right turns were rewarded with 50%

probability (Figure S1A), and trials were only repeated in the event of a timeout, not an unrewarded choice. An incorrect choice or

timeout resulted in an extra 2 s delay before the next trial for all stimulus conditions. After a trial finished (i.e. after either reward de-

livery or the end of the 2 s delay), an inter-trial interval of 1.5–2.5 s (uniform distribution) occurred before the software began to wait for

the next quiescent period. Behavioral sessions were terminated at experimenter discretion once the mouse stopped performing the

task (typically 1 h).

Mice were trained in stages (Figure S1B). First, they were trained to � 70% performance with only coherent trials; then auditory,

visual, and neutral/conflict trials were progressively introduced based on experimenter discretion. Using this training protocol,

� 80% of mice learned the task, and those that did learn reached the final stage in <30 sessions (Figure S1C).

Optogenetic inactivation
For optogenetic inactivation experiments (Figures 2, S4, and S5) we inactivated several cortical sites through the skull using a blue

laser,59–62 in transgenic mice expressing ChR2 in Parvalbumin-expressing inhibitory interneurons (Ai32 x PV-Cre). Unilateral inacti-

vation was achieved using a pair of mirrorsmounted on galvomotors (GVSM002-EC/M, Thor labs) to orient the laser (L462P1400MM,

Thor labs) to different points on the skull. On every trial, custom code drove the galvo motors to target one of 52 different coordinates

distributed across the cortex (Figure 2A), along with 2 control targets outside of the brain (Figure S4C). A 3D-printed isolation cone

prevented laser light from reaching the screens and influencing behavior. Inactivation coordinates were defined stereotaxically from

bregma andwere calibrated on each session. Anterior-posterior (AP) positions were distributed across 0, ± 1, ± 2, ± 3, and�4mm.

Medial-lateral (ML) positions were distributed across ± 0.6, ± 1.8, ± 3.0, and ± 4.2 mm. On 75% of randomly interleaved trials, the

laser (40 Hz sinewave, 462 nm, 3mW) illuminated a pseudorandom location from stimulus onset until the end of the responsewindow

1.5 s later (both open and closed loop periods, irrespective of mouse reaction time). The laser was not used on trial repetitions due to

incorrect choices or timeouts. Pseudorandom illumination meant that a single cortical site was inactivated on only 1.4% of trials per

session. This discouraged adaptation effects but required combining data across sessions for analyses. The galvo-mirrors were re-

positioned on every trial, irrespective of whether the laser was used, so auditory noise from the galvos did not predict inactivation. For

bilateral optogenetic inactivation (Figures S5Q–S5X), the same strategy was used, but the galvo motors flipped between two loca-

tions at 40 Hz, effectively providing 20 Hz stimulation at each location. The laser power was reduced to zero when the galvo motors

moved between locations. This resulted in a reduced laser power of � 2 mW.
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To investigate the effects of inactivation at different time points (Figures 2J and 2K) in separate experiments, the laser was switched

on for 25 ms (DC) at random times relative to stimulus onset (�125 to +175 ms drawn from a uniform distribution). Inactivation was

randomly targeted to visual areas (VISp;�4 mm AP, ±2 mmML) or secondary motor area (MOs; +2 mm AP, ±0.5 mmML) on 25% of

trials.

Neuropixels recordings
Recordings in behaving mice weremade using Neuropixels (Phase3A;99) electrode arrays, which have 384 selectable recording sites

out of 960 sites on a 1 cm shank. Probes were mounted to a custom holder (3D-printed polylactic acid piece) affixed to a steel rod

held by a micromanipulator (uMP-4, Sensapex Inc.). Probes had a soldered external reference connected to ground which was sub-

sequently connected to an Ag/AgCl wire positioned on the skull. On the first day of recording mice were briefly anesthetized with

isoflurane while one or two craniotomies were made with a biopsy punch. After at least 3 h of recovery, mice were head-fixed in

the usual position. The craniotomies, as well as the ground wire, were covered with a saline bath. One or two probes were advanced

through the dura, then lowered to their final position at approximately 10 mm/s.

Electrophysiological data were recorded with Open Ephys.100 Raw data within the action potential band (1-pole high-pass filtered

over 300 Hz) was denoised by common mode rejection (that is, subtracting the median across all channels), and spike-sorted using

Kilosort97 version 2.0 (www.github.com/MouseLand/Kilosort2). Units were manually curated using Phy to remove noise and multi-

unit activity.101 Each cluster of events (‘unit’) detected by a particular template was inspected, and if the spikes assigned to the

unit resembled noise (zero or near-zero amplitude; non-physiological waveform shape or pattern of activity across channels), the

unit was discarded. Units containing low-amplitude spikes, spikes with inconsistent waveform shapes, and/or refractory period

contamination were labeled ‘multi-unit activity’ and not included for further analysis.

To localize probe tracks histologically, probes were repeatedly dipped into a centrifuge tube containing DiI before insertion

(ThermoFisher Vybrant V22888 or V22885). When probes were inserted along the same trajectory for multiple sessions (Figure S6A),

they were coated with Dil on the first day, and subsequent recordings were estimated to have the same trajectory within the brain

(although depth was independently estimated, Figure S6B). After experiments were concluded, mice were perfused with 4% para-

formaldehyde. The brain was extracted and fixed for 24 h at 4�C in paraformaldehyde before being transferred to 30%sucrose in PBS

at 4�C. The brain was thenmounted on amicrotome in dry ice and sectioned at 80 mm slice thickness. Sections were washed in PBS,

mounted on glass adhesion slides, and stained with DAPI (Vector Laboratories, H-1500). Images were taken at 43magnification for

each section using a Zeiss AxioScan, in two colors: blue for DAPI and red for DiI. Probe trajectories were reconstructed from slice

images (Figure S6A) using publicly available custom code (http://github.com/petersaj/AP_histology102). For each penetration, the

point along the probe where it entered the brain was manually estimated using changes in the local field potential (LFP) signal (Fig-

ure S6B). Recordings weremade in both left (47 penetrations) and right (41 penetrations) hemispheres. The position of each recorded

unit within the brain was estimated from its depth along the probe. For visualization, the recorded cells weremapped onto a flattened

cortex using custom code (Figure 3A). Given the small size the frontal pole, neurons in this region could not be confidently separated

from MOs, and so were considered part of MOs for the purpose of this manuscript (14% of MOs cells; excluding these cells did not

significantly impact results).

For recordings from naive mice (Figures 5, 6C, 6D, and 6F), data were acquired with 4-shank Neuropixels 2.0 probes, which have

384 selectable recording sites out of 5,000 sites on 4 1 cm shanks.103 We recorded from the 96 sites closest to the tip of each shank.

Electrophysiological data for these experiments were recordedwith SpikeGLX (https://billkarsh.github.io/SpikeGLX/). The same pro-

cedures were followed as above for mouse surgery andmanual curation of units. Changes in LFP signal were used to detect the point

at which the probe entered the brain, and only cells within 1.25mm of the brain surface (i.e. within MOs) were included in analyses.

Passive stimulus presentation recordings
Mice were presented with task stimuli under passive conditions after each behavioral recording session. Although the wheel re-

mained in place, stimuli were presented in open-loop (entirely uncoupled from wheel movement) and mice did not receive rewards.

Unisensory auditory, unisensory visual, coherent, and conflict trials were presented to mice. However, on unisensory visual trials, the

auditory amplitude was set to zero (rather than positioned at 0� as in the task) to ensure visual sensory responses could be isolated.

Due to time constraints, only one coherent and conflicting stimulus combination were presented (80% contrast in both cases), and

the trial interval was reduced (randomly selected from 0.5 to 1 s). Stimulus conditions were randomly interleaved, and each condition

was repeated � 50 times.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics
Statistical tests used in each analysis can be found in the corresponding figure legend, and in the STARMethods.Where relevant, the

definition of center, dispersion, and precision measures (e.g. MAD vs. SD) are described in the text or figure legend. Sample sizes

were not estimated prior to data collection. Statistical tests were selected according to the typified distribution for each data

type, but we did not perform additional analyses to test the statistical assumptions of each test. Blinding of the experimenter was

not applicable to these analyses. Where data were excluded, the reasoning is described in the corresponding section. Statistical
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tests used, the value of n, and what n represents in each analysis can be found in the corresponding figure legend or in the STAR

Methods.

Behavioral quantification
With the exception of specific analyses of timeout trials (Figures 2L and S5I–S5P), timeouts and repeats following incorrect choices

were excluded. To remove extended periods of mouse inattention at the start and end of experimental sessions, we excluded trials

before/after the first/last three consecutive choices without a timeout. The 6% contrast level was included in analyses of inactivation

experiments (Figure 2) as all mice contributing to these analyses were presented with 6% contrast levels, but not all behavioral and

electrophysiology sessions included 6% contrast.

On 91.5% of trials (142853/156118), subjects responded to the stimulus onset by turning the wheel within the 500 ms open-loop

period (Figure S1F). For data analysis purposes, we therefore calculatedmouse choice and reaction time from any wheel movements

after stimulus onset (Figures S1D and S1E), even though during the task, rewards would only be delivered after the open-loop period

had ended. These choices were defined by the first time point at which the movement exceeded � 30� of wheel rotation (the exact

number varied across sessions/mice, Figure S1D), the same threshold required for reward delivery during the closed-loop period.

This matched the outcome calculated during the closed loop period on 94.9% of trials (148203/156118). The reaction time was

defined as the last time prior to the choice threshold at which velocity crossed 0 after at least 50 ms at 0 or opposite to the choice

direction, and then exceeded 20%of the choice threshold per second for at least 50ms (Figure S1E). On 5.1%of trials (8380/164498),

no such timepoint existed or movement was non-zero within 10 ms of stimulus onset; these trials were excluded. On 38% of trials

(59498/156118), mice made sub-threshold movements prior to their calculated reaction time. To eliminate the possibility that these

earlier movements were responsible for the neural decoding of choice (Figure 3G) we repeated this analysis using only trials without

any movement prior to the calculated reaction time (Figure S6C), which did not change the results.

When calculating performance for each stimulus type for a single contrast (Figures 1E, S1N, and S1P), the value for each mouse

was calculated within each session before taking the mean across sessions. We then took themean across symmetric presentations

of each stimulus condition (e.g. unisensory auditory left and right trials). In the case of reaction time (Figures S1H–S1J), we calculated

the median for each session before taking the mean across sessions and symmetric presentations. For relative reaction time

(Figures 1B, S1O, S1Q, and 6D) we also subtracted the mean across all stimulus types for each mouse. For both performance

and reaction time, differences between stimulus types were quantified with a paired t test (n = 17 mice). Using this analysis, we es-

tablished that reaction times were faster on unisensory auditory trials than unisensory visual trials (Figure 1B). To confirm that the

earliermovements on unisensory auditory trials were genuine choices rather than reflexivemovements unrelated to the stimulus loca-

tion, we predicted whether stimuli were presented on the right or left in unisensory auditory and unisensory visual trials from thewheel

velocity at each timepoint after stimulus onset. Trial data was subsampled for each session (to equalize the number of stimuli appear-

ing on the left and right) and split into test and training data (2-fold cross validation). Mean prediction accuracy was calculated by first

taking themean across sessions, then acrossmice. Consistent with our conclusions from calculated reaction times, auditory location

could be decoded earlier than visual location (Figure S1G). This conclusively demonstrates that micewere able to identify the location

of an auditory stimulus earlier than a visual stimulus.

Video motion energy analysis
Because neural activity across the brain is related to bodily motion,68,69 we asked if mice still respond to stimuli in the passive con-

dition. We filmed the mouse at 30 frames per second (DMK 23U618, The Imaging Source). We quantified the motion energy on each

trial by averaging the absolute temporal difference in the pixel intensity values, across all pixels in a region of interest including the

face and paws, and across a time period 0 to 400 ms after stimulus onset, which typically included the mouse response during

behavior (Figure S1F). This analysis established that mice exhibit minimal movement in response to task stimuli during passive con-

ditions (Figure S7T).

Wheel movement during active vs. passive conditions
To ask whether mice might still move the wheel in response to stimuli during passive stimulus presentation (Figures S7U–S7V) we

calculated the absolute difference in wheel position between stimulus onset time and 0.5 s post-stimulus onset for five mice, and

then took the mean across mice. We compared this value to a shuffled distribution generated from the same trials, using the

same method, but with the stimulus onset time randomized within each trial (this process was repeated 1000 times). The wheel po-

sition at 0.5 s after stimulus onset was considered significant if the unshuffled value was in the top 5% of the values in the shuffled

distribution.

Psychometric modeling
The model we use throughout the text, the (parametric) additive model, is given by the equation

log

�
PðRÞ
PðLÞ

�
= b+ ðvRVR

g � vLVL
gÞ+ ðaRAR � aLALÞ
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Model parameters were fit by maximizing the likelihood of observed behavioral data using MATLAB’s fmincon function to imple-

ment the interior-point algorithm to find 6 fit parameters: vR , vL aR and aL representing sensitivities to right and left visual and auditory

stimuli, b representing bias, and the contrast gain parameter g. When fitting for individual mice (Figures 1C, 1F, S1K, and S3A–S3O),

models were fit to data combined across sessions.When themodel was fit to combined data frommultiplemice (Figures 1D, 1G, 2G–

2H, S2, and S4E–S4H), trials were subsampled to equalize numbers across mice before fitting the model. This subsampling process

was repeated 10 times, and plots reflect the mean model parameters, and fraction of rightward choices, across repeats. For visu-

alization, if the log-odds were not defined for a given stimulus condition (because a mouse, or mice, made only rightward or leftward

choices) the log odds were regularized by adding one trial in each direction. This was only necessary for the coherent stimulus con-

dition at 10% contrast in Figure 2H.

We compared our additive model to a range of other models (Figure S2), all fit the same way. The ‘‘auditory-only’’ model (Fig-

ure S2A) was given by:

log

�
PðRÞ
PðLÞ

�
= b+ ðaRAR � aLALÞ

And the ‘‘visual-only’’ model (Figure S2B) was given by:

log

�
PðRÞ
PðLÞ

�
= b+ ðvRVR

g � vLVL
gÞ

For the ‘‘auditory dominance’’ model (Figure S2C), we set the visual weight to zero whenever auditory and visual stimuli were in

conflict:

log

�
PðRÞ
PðLÞ

�
= b+ ð1 � TconÞðvRVR

g � vLVL
gÞ+ ð1 � aconTconÞðaRAR � aLALÞ

Here, Tcon is a binary variable, equal to 1 or 0 to indicate whether each trial is amultisensory conflict trial, and acon is an additional fit

parameter. We tested this model both with acon = 0 (Figure S2C) and with acon allowed to take any value (Figure S2D).

As a more general test for any evidence of visual or auditory dominance during audiovisual trials, we fit a ‘‘sensory bias’’ model

(Figure S2E) with additional auditory and visual weights on coherent and conflict trials:

log

�
PðRÞ
PðLÞ

�
= b+ ð1 � vconTconÞð1 � vcohTcohÞðvRVR

g � vLVL
gÞ+ ð1 � aconTconÞð1 � acohTcohÞðaRAR � aLALÞ

Here, acon, vcon, acoh, and vcoh are fit parameters and Tcoh is a binary variable, equal to 1 or 0 to indicate whether each trial is a multi-

sensory coherent trial. Our 6-parameter additive model is a special case of this 10-parameter sensory bias model, when the 4 multi-

sensory parameters are zero.

The 11-parameter ‘‘additive unconstrained’’ model (Figure S2F) is similar to the usual additive model, but can fit any function of

contrast, not just a power function:

log

�
PðRÞ
PðLÞ

�
= b + viVi + ajAj

HereVi andAj are binary variables indicating the presence of contrast i and auditory location j on a given trial. The parameters vi and

aj represent the visual and auditory sensitivities to contrast auditory location j, and are constrained to be 0 for zero contrast visual and

central auditory stimuli.

Finally, to determine whether a generic non-additive model of multisensory integration could improve model fit, we tested a

27-parameter ‘‘full model’’ which had a weight for each combination of auditory and visual stimuli (Figures 1H and S3P).

log

�
PðRÞ
PðLÞ

�
= wijViAj

We evaluated the fit of each model by its log2-likelihood ratio relative to a bias-only model logðpðRj A;VÞ =pðLj A;VÞÞ = b using

5-fold cross-validation. After normalizing by the number of trials, this yields a quantity in bits per trial: the number of bits two parties

would save in communicating the mouse’s choice, if the stimulus is known to both. We compared all models to the additive para-

metric model (Figures 1H and S2). Across 17 mice, the additive model was not significantly worse than the full model, either when

trained on all trial types (Figure 1H), or when trained only on unisensory and neutral trials but tested on all trials including multisensory

combinations (Figure S3P), suggesting that mice use the same behavioral strategy on all multisensory trials.

When fitting the additive model to data where different regions of dorsal cortex were inactivated, three target locations were com-

bined to represent each region. For visual cortex (Figures 2G, 2I, 2L, S4H, and S5A–S5P), these were (�4,1.8), (�4,3) and (�3,3),

where coordinates indicate (AP, ML) distances from bregma in mm. For frontal cortex (2,0.6), (2,1.8) and (3,0.6) (Figures 2H, 2I,

2L, S4G–S4H, and S5A–S5P); for lateral areas proximal to auditory cortex (�4,4.2), (�2,4.2), (�2,4.2) (Figures S4E, S4H, and

S5A–S5P); for areas proximal to somatosensory cortex (1,3), (0,3), (0,4.2) (Figures S4F and S4H). When fitting these models, the
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contrast gain parameter was fixed at the value obtained when fitting to non-inactivation trials. During bilateral inactivation

(Figures S5Q–S5X), coordinates were as follows: for frontal cortex (2, ± 0.5), (2, ± 1.5) and (3, ± 0.5); for visual cortex (�4, ±

1.5), (�4, ± 2.5) and (�3, ± 2.5); for parietal cortex (�2, ± 1.5), (�2, ± 2.5), and (�2, ± 3.5).

For a mouse presented with 5 auditory conditions (Figures S1K–S1L), the additive model contained two additional auditory param-

eters, such that each non-zero auditory azimuth had a distinct weight:

log

�
PðRÞ
PðLÞ

�
= b+

�
vRVR

g � vLVL
g

�
+

�
aR60

AR60
+ aR30

AR30
� aL60AL60 � aL30AL30

�

Here, R60, R30, L60, and L30 indicate whether the auditory stimulus was presented at 30� or 60� on the left or right.

Quantifying effects of optogenetic inactivation on choice
To quantify the change in the fraction of rightward choices when a particular cortical location was inactivated, we used a shuffle test

(Figures 2B–2E, S4A, and S4B). Data were initially combined across 5 mice and segregated by stimulus type (unisensory visual, uni-

sensory auditory, multisensory coherent, or multisensory conflict). For each type, data were further segregated into non-inactivation

trials (laser off) and inactivation trials (laser on) grouped by the targeted area of dorsal cortex. For trials where the stimulus was pre-

sented on the right, we reversed the laterality of the stimulus and inactivation location such that all stimuli were effectively presented

on the left (visual stimulus in the case of conflict trials). Data were randomly subsampled (from a total of� 80,000 trials) to equalize the

number of trials contributed by each mouse to non-inactivation and inactivation trials at each targeted location. We then calculated

the difference in the fraction of rightward choices for each targeted location compared with non-inactivation trials. This process was

repeated 25,000 times with different subsampling to produce a mean change in fraction of rightward choices for each inactivated

location on dorsal cortex.

For each of the 25,000 iterations, we proceeded to generate 10 independent shuffles, where the labels for targeted location and

trial identity (inactivation or non-inactivation) where randomly reassigned. We thus generated a null distribution for each targeted

location, comprising 250,000 datapoints from independent shuffles. For each targeted location, the position of the unshuffled result

within this null distribution gave the significance value for that location (e.g. top/bottom 0.05% for p < 0:001, top/bottom 0.005%

for p < 0:0001).

When assessing the symmetry of inactivation effects across hemispheres (Figure S4A) the process was as described above, but

without reversing the laterality of any trials. To confirm results were similar across mice (Figure S4B), we repeated this process for

individual mice. In this case, the number of shuffled iterations remained at 250,000 but no subsampling was required (because there

was no need to equalize across mice).

To test how pulsed inactivation at different times affected choices (Figures 2J and 2K), data were combined across 7 mice. Trials

where stimuli appeared on the right were reversed such that an increase in the fraction of rightward choices corresponded to an in-

crease in the fraction of ipsilateral choices. Experimental sessions with fewer than 75 inactivation trials were excluded to ensure that

each session contributed to both the fraction of inactivation and control trials. Laser onsets were binned using a sliding 70ms boxcar

window, and the time between stimulus onset and inactivation was defined as the center of this window. In each 70ms time window,

we calculated the change in fraction of rightward choices comparedwith non-inactivation trials, and the significance of this difference

was established with a Fisher’s exact test. Each timepoint was defined as significant if it, or both its neighboring timepoints, passed

the significance criterion of p < 0.001.

Quantifying effects of optogenetic inactivation on model parameters
To quantify the changes in parameters of the additive model (Figures 2F and S4D) the analysis closely mirrored the steps described

above, but trial types were not segregated by stimulus type. This increased statistical power compared with analyses of separate

stimulus types (above), allowing for the detection of more subtle changes in mouse behavior. The additive model was reparametrized

such that stimuli were defined as being ipsilateral or contralateral to the site of inactivation, effectively combining data across

hemispheres:

log

�
PðIÞ
PðCÞ

�
= b+

�
viVi

g � vcVc
g

�
+

�
aiAi � acAc

�

Here, Vc and Vi are contralateral and ipsilateral contrasts, and Ac and Ai are contralateral and ipsilateral auditory azimuths. vi , vc ai
and ac represent sensitivities to contralateral and ipsilateral visual and auditory stimuli, while b represents the bias, and g the contrast

gain parameter. The unshuffled dataset comprised 2,500 different subsamples, and in each iteration, we fit the additive model to the

non-inactivation data and to the inactivation data for each targeted location. This gave the mean change in each model parameter at

each location on dorsal cortex. We compared this value to a null distribution (generated as described above, total of 25,000 indepen-

dent shuffles) to establish the significance of each change. Since we observed no change in the contrast gain parameter, g (Fig-

ure S4D), in our final analysis we fixed this value according to the non-inactivation trials and only quantified changes in the remaining

5 parameters (Figure 2F).

To determine whether inactivating these regions caused a significant change in model parameters compared with non-inactivation

trials, we evaluated the log likelihood ratio between a model trained and evaluated on inactivation trials and a model trained on non-
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inactivation trials and then evaluated to inactivation trials for individual mice. We then determined if the log likelihood ratio was signif-

icantly different from zero across the 5 mice using a t test (Figures 2G, 2H, S4E, and S4F).

To test whether inactivation of the four different regions (frontal, visual, lateral sensory, and somatosensory cortices) had signifi-

cantly different effects we used a shuffle test to evaluate data combined across all mice (Figure S4H). For each pair of regions, as well

as non-inactivation trials, we calculated inter-region log likelihood (where the model was fit to trials from one region and then eval-

uated on another region) and a within-region log likelihood (where the model was trained and evaluated on data from one inactivated

region). We repeated this process in 100 different subsamples, equalizing the number of trials from each mouse, and the number of

trials in the train and test sets, and took the mean log likelihood ratio between the inter-region and within-region results. We then

generated a null distribution by repeating this process, but with the label of the inactivation site shuffled before splitting the data

to perform the inter-region and within-region comparison (total of 1,000 independent shuffles). For each pairwise regional compar-

ison, we compared themean unshuffled log likelihood ratio to the null distribution and found that every inter-region log likelihood was

significantly lower than the within-region log likelihood (p < 0.05, Bonferroni-corrected).

The effect of inactivation on reaction time, fraction of timeout/slow trials, and rightward choices
We used a linear mixed effects model (LME) to determine the effect of inactivating visual, lateral, or frontal cortices onmouse reaction

time for each stimulus type (auditory, visual, coherent and conflicting) when stimuli were contralateral or ipsilateral to the site of

inactivation (Figures 2I and S5A–S5H). For each mouse, we computed the median reaction time over trials of all sessions for each

combination of stimulus condition and inactivation region. We fit the following LME model to this data using MATLAB’s fitlme

function:

Reaction time � Inactivation + VisualContrast + ð1jMouseIDÞ
Here, Reaction time is the response variable, Inactivation (binary) and VisualContrast (categorical) were fixed effect terms, and

MouseID was a random effect on the intercept. We separate LMEs for each stimulus type and region of inactivation. In each

case, we assessed the sign and significance of the Inactivation term to assess the impact of inactivation on mouse reaction time

(Figures 2I and S5A–S5H). To make direct inter-region comparisons, we modified the LME model:

DReaction time � InactivationRegion + VisualContrast + ð1jMouseIDÞ
Here, DReaction time is the difference in reaction time between the inactivated trials and non-inactivation trials for each stimulus

condition (for each stimulus condition within a stimulus type). InactivationRegion is a binary fixed effect term identifying which brain

region (of the two being compared) was inactivated (for example, frontal and visual, Figure 2I). As above, we assessed the sign and

significance of the InactivationRegion term to determine whether the inactivation region had a significant effect on the change in re-

action time (Figures 2I and S5A–S5H).

Statistical analyses of timeout trials were performed in the same way as the two previous LMEs, but Reaction time was replaced

with Fraction of timeouts (the fraction of responses greater than 1.5 s) and DReaction time was replaced with DFraction of timeouts

(Figures 2L and S5I–S5P).

For statistical analyses of the effect of bilateral inactivation on reaction time (Figures S5Q–S5X), slow trials were defined as all trials

with reaction times greater than 300 ms. We used this binarization, rather than raw reaction time, because we did not have enough

bilateral inactivation trials to accurately estimate the reaction time. Analyses were performed as described above, but Reaction time

was replaced with Fraction of slow trials and DReaction time was replaced with DFraction of slow trials (Figures S5Q–S5T).

For statistical analyses of the effect of bilateral inactivation on the fraction of rightward choices, trials with stimuli on the left and

right were combined after reversing the choice direction for trials with stimuli on the right (the visual stimulus in the case of conflict

trials). Analyses were performed as described above, but Reaction time was replaced with Fraction of rightward choices and

DReaction time was replaced with DFraction of rightward choices (Figures S5U–S5X).

Estimating firing rate
Unless otherwise specified, firing rates were calculated on each trial by binning in 2 ms windows and smoothing with a half-Gaussian

filter with standard deviation of 60 ms. PSTHs were calculated by averaging this rate across trials.

Decoding stimuli and choices from population activity
To decode stimuli and choices from neural activity (Figures 3E–3G, S6C, and S6D), we trained a linear support vector machine (SVM)

decoder on the firing rate vector time-averaged over a window 0–300 ms after stimulus onset (Figures 3E and 3F), 0–130 ms before

movement onset (Figures 3G and S6C), or 150–300 ms after movement onset (Figure S6D). SVMs were trained separately for each

Neuropixels behavioral recording. To ensure that differences in decoding accuracy between brain areas and between experiment

sessions could not be attributed to differences in the number of neurons recorded, we repeatedly (5 repeats) selected a

30-neuron subset for decoding analysis and took the mean accuracy (5-fold cross-validated) across these repeats. Sessions with

fewer than 25 trials of each decoded condition (e.g. left and right stimulus locations), and brain regions with less than 30 neurons

recorded in that session, were excluded. In the case of decoding visual location (Figure 3E), only trials with high-contrast (40%

and 80%) stimuli were included. In each session, decoding accuracy was quantified as the fraction of test-set trials classified
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correctly, relative to the same number for a model with no access to the spike trains (whose optimal behavior is to always predict the

most common stimulus on the training set):

Accuracy =
Neural decoding accuracy � Baseline accuracy

1 � Baseline accuracy

To compare the decoding accuracy between brain regions, we first performed a one-way ANOVA, which showed a significance

difference (visual location: F = 26.1, p < 10�20, auditory location: F = 77.7, p < 10�67, and upcoming choice: F = 21.0, p < 10�13). To

compare pairwise differences, we fit a linear mixed effects model:

Accuracy � Brain region+ ð1jMouseIDÞ
Here, Accuracy is defined as above,Brain region is a categorical fixed effect andMouseIDwas a random effect on the intercept, to

take account of the potential confound of differences in decoding accuracies across mice (Figures 3E–3G).

We used the same definition of decoding accuracy 0–130 ms before movement onset to investigate the relationship between

choice decoding and behavioral performance—defined as the percentage of correct choices—in individual experimental sessions

(Figure S6F, right panel). We then used a linear mixed effects model to test for a significant effect of behavioral performance on de-

coding accuracy whilst controlling for differences across mice:

Accuracy�performance+ ð1 + performancejMouse IDÞ
Where peformance is a continuous fixed effect and we allow for a random effect on both the slope and the intercept. Using the

same form of linear mixed effects model, we tested for a continuous fixed effect of themean anterior-posterior (Figure S6F, left panel)

and medial-lateral (Figure S6F, middle panel) recording location. Mean location was calculated from the subsampled neurons used

for decoding on each probe in each session.

Quantifying ramping of choice-related activity in MOs
To quantify the population dynamics of the choice-related activity inMOs (Figure S6E), we first computed themean population vector

corresponding to leftward choices mL
�! and rightward choices mR

�! by taking the mean activity across trial and from 0 to 100 ms after

movement onset. Then, for each time bin of neural activity during each trial, xðtÞ��!
, we obtained the cosine similarity of the population

vector with the difference between the rightwards and leftward choice population vectors:

Sc

�
xðtÞ��!

; mR
�! � mL

�!�
=

xðtÞ��!
$ð mR
�! � mL

�!Þ
kxðtÞ��!k k mR

�! � mL
�!k

To cross validate the results for each stimulus condition, we held out the within-condition data and computed the choice vectors

from all other stimulus conditions. Before computing these vectors, we balanced the number of trials with leftward and rightward

choices to prevent stimulus-related activity from biasing the projection onto the choice axis.

Combined-conditions choice/stimulus probability analysis
To quantify the selectivity of a cell for a choice while controlling for effects of stimulus (Figure S6J), we used the combined-conditions

choice probability (ccCP,95). This is based on an extension of the Mann-Whitney U statistic, defined as the fraction of pairs of trials of

identical stimulus conditions but different choices, for which the firing rate on the right choice trial exceeds the firing rate on the left

choice trial. The significance of this test statistic was evaluated by shuffling using a p value of 0.01, meaning that the observed value

has to be either below the 0.5 percentile or above the 99.5 percentile of a null distribution generated from 1000 shuffles of the choice

labels for each stimulus condition in order to be deemed significant. For ccCP, we compared the firing rate averaged over 0–130 ms

before movement onset between trials where the mouse made a leftward or rightward choice trials (Figure S6J).

To test for selectivity to one stimulus while controlling for the other stimulus and choice (Figure S6I), we used an analogousmethod,

referred to as the combined conditions stimulus probability (ccSP). For visual ccSP, we compared the firing rate time-averaged over a

0–300 ms window after stimulus onset, between trials where the visual stimulus was on the left and trials where the visual stimulus

was on the right, including only trials with high (40% or 80%) contrast (Figure S6I, left). For auditory ccSP, we compared the firing rate

averaged over a time window 0–300 ms after stimulus onset between auditory-left and auditory-right trials (Figure S6I, right).

Modeling neural activity
To predict firing rate time courses from task events (Figures 4A–4C), we used an ANOVA-style decomposition. For this analysis, we

pooled multisensory coherent and conflict trials of contrast 40% and 80% (using a single visual contrast did not impact results), re-

sulting in four possible stimulus conditions: one for each combination of auditory and visual location. We defined binary variables

ai; vi; ci = ±1 encoding whether auditory stimuli, visual stimuli, and choices are to the left or right on trial i. We can decompose

F iðtÞ, the firing rate vector on trial i at time t after stimulus onset, as:

F iðtÞ = BðtÞ + aiAðtÞ + viVðtÞ + aiviNðtÞ + Mðt � tiÞ+ ciDðt � tiÞ
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This model decomposes the response into a sum of 6 temporal kernels. B represents the grand mean stimulus response; A and V

represent the additive main effects of auditory and visual stimulus location, and N represents a non-additive interaction between

them. To account for the effects of movement, M is a kernel representing the mean effect of movement (relative to ti, the time of

movement onset on trial i) and D represents the effect of movement direction. B;A;V ;N were allowed to be non-zero for �50 %

t% 400 ms. M;D can be non-zero for �200 % t � ti % 700 ms. Only trials with ti < 300 ms were included. The model was fit using

ridge regression with a regularization strength of a = 10, which we found to give optimal prediction accuracy. We fit this model to

each neuron in MOs with a non-zero firing rate during behavior (n = 2183 neurons), using a training set consisting of half the trials

(randomly selected). The error, E, of this fit was measured as:

E =
1

Ni

1

Nt

X
i

X
t

ðyit � byitÞ2

Here, byit and yit aremodel prediction and test-set recorded firing rate on trial i and timepoint t,Ni is the number of neurons, andNt is

the number of time bins, spanning 0 to 400 ms relative to stimulus onset. E is thus the cross-validated mean-squared error between

the predicted and the actual smoothed firing rate over this time window. To test for an additive code, we then repeated this process

for an additive neural model where N = 0 (Figure 4C).

To investigate whether there was an interaction between stimulus condition and choice-related response, we also fit amodel with 8

movement-aligned kernels, i.e. a movement and a direction kernel for each combination of the four possible audiovisual stimuli:

F iðtÞ = BðtÞ + aiAðtÞ + viVðtÞ + aiviNðtÞ + Mai ;vi ðt � tiÞ+ ciDai ;vi ðt � tiÞ
We compared this full model to the additive neural model (two movement kernels and N = 0) using the method described above

(Figure S7A).

To model neural activity during passive stimulus presentation (Figures 4D–4G), we used a reduced model without movement-

aligned kernels:

F iðtÞ = BðtÞ+ aiAðtÞ+ viVðtÞ+ aiviNðtÞ
Here, only multisensory coherent and conflict trials of a single (80%) contrast were included (due to time constraints, this was the

only contrast presented onmultisensory trials in passive conditions). To test for an additive code, we repeated the process described

above (on 2,509 cells with non-zero firing rates, Figure 4F). No regularization was used for this analysis of passive data as it did not

improve fits.

To compare the fit of linear and non-linear models of neural firing (Figures 4C, 4F, and S7A), we used a linear mixed effects method

to determine the main effects of the prediction model, accounting for systematic differences in model fit across mice and across ex-

periments within each mouse. This was done using the fitlme in MATLAB with the following formula:

error � 1 + model + ð1 + modeljsubjectÞ+ ð1 + modeljsubject : sessionÞ+ ð1jsubject : session : neruonÞ
The error term E is modeled with an intercept, a fixed effect of the model type being used (e.g. either the additive or full model),

random effects for the intercept and model type grouped by subjects, random effects for the intercept and model type grouped

by session nested within subjects, and random effects for the intercept grouped by neurons nested within sessions within subjects.

For all statistical tests we report the p value of the main effect of the model type on the observed error values.

To examine the distribution of auditory and visual spatial sensitivity across neurons we used neural recordings from passive stim-

ulus presentation (Figures 4G and S7B). We selected neurons where the additive neural model (N = 0Þ explained a minimum of 2%

variance. For each neuron, we averaged the amplitude of the A and V kernels over a time window from 0 to 300 ms after stimulus on-

set (the kernels were fit using all trials). To test for a significant correlation between the signed magnitude of these time-averaged A

and V kernels, we used the linear mixed effects model described above, but with time-averaged Vkernel and time-averaged A kernel

substituted for error andmodel (Figure 4G). To test for a relationship between the absolute values of the two kernels, we repeated this

procedure but using the absolute, rather than the signed, time-averaged kernels (Figure S7B).

Lateralization of stimulus and movement activity
To investigate whether there is lateralization in the spatial preference of auditory neurons, we examined time-averaged value of the A

kernels (0 ms–300ms after stimulus onset) after fitting the additive model (N = 0) under passive conditions. We selected neurons for

which the additive model performed better than a model with visual kernel alone, and compared the mean value of the A kernel for

neurons recorded in each hemisphere (Figure S7D). We repeat the same procedure for the visual kernel weights to examine lateral-

ization of visual spatial preference (Figure S7C).

To investigate the lateralization of movement-related responses, we repeated this procedure, but for the additive model (N = 0)

during behavior. We then included all for which the directional movement kernel,D improved cross-validated fits. Mean kernel values

of selected neurons were calculated using a time window �200 to 400 ms relative to movement onset (Figure S7E).

Statistical analysis to determine the lateralization of sensory and movement responses were performed with linear mixed effects

model as described above, but with time-averaged kernel and hemisphere substituted for error and model.
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Quantifying stimulus and movement activity as a function of location within MOs
To investigate whether there was an over-representation of stimulus or choice related activity in a specific subregion of MOs, we

selected probes with at least 30 recorded neurons in MOs. For each probe, we then computed the mean across neurons for the ab-

solute time-averaged value of the stimulus and movement kernels (described above), medial-lateral position, and anterior-posterior

position. We then calculated the Pearson’s correlation between each position and the kernel values across all probes (Figures S7F,

S7H, S7J, S7L, S7N, and S7P). When considering depth relative to the brain surface, we computed themean absolute kernel sizes for

each 0.09 mm bin of depth values (Figures S7G, S7I, S7K, S7M, S7O, and S7Q). We additionally controlled for higher firing rates in

deeper regions of cortex, by dividing the firing rate of each neuron by the baseline firing rate 0–700 ms before stimulus onset.

Quantifying single-neuron discrimination time
To identify when visual and auditory information began to be encoded in MOs (Figure 4H), we analyzed responses to passive unisen-

sory stimuli. We first used shuffle tests to select neurons sensitive to the presence (On-Off) and/or the location (Right-Left) of auditory

and visual stimuli. To identify On-Off neurons, we calculated two PSTHs, one for sounds in each location, in a window 0 to 300 ms

after stimulus onset, and computed the difference between the maximum of this PSTH and the mean firing rate 300 to 0 ms before

stimulus onset. We compared this value to a null distribution obtained from 1000 shuffles of the pre/post-stimulus windows indepen-

dently for each trial. A neuron was defined as significantly responding to a stimulus if the maximum difference in unshuffled data was

in the first or 99th percentile of the null distribution for either left or right stimuli. For Right-Left neurons, the same method was used,

but using the maximum difference between the PSTHs for left and right auditory or visual presentations 0 to 300 ms after stimulus

onset, and shuffling the left/right trial labels. This method identified 72 auditory (3%) and 68 visual (3%) Right-Left neurons.

For identified On-Off neurons, we calculated the discrimination time by separately comparing the pre- and post-stimulus firing rate

in a sliding window of 50 ms with step size 5 ms, defining significance using a Mann-Whitney U test at p < 0.01, and requiring three

consecutive significant timewindows to qualify as the discrimination time.We excluded discrimination times that occurredmore than

300 ms after stimulus onset as they are unlikely to be stimulus-related activity. This analysis was done separately for left and right

stimuli, taking the earliest statistically significant time window in either stimulus condition. For identified spatially selective (Right-

Left) neurons, we defined the discrimination time as the earliest time after stimulus onset where there is a significant difference in

the response to left and right stimuli (Figure 4H). This method identified discrimination times for 82 and 36 auditory and visual On-

Off neurons, and 59 and 36 auditory and visual Right-Left neurons. For each neuron we also calculated the 5-fold cross-validated

decoding accuracy, relative to a baseline model (which always predicts the most-frequent stimulus-condition in the training set,

as in Figures 3E and 3F), from the time-averaged firing rate in a window 0 to 100ms after the discrimination time using a linear

SVM decoder (Figure S7W).

Quantifying single-neuron discriminability index
To quantify single-neuron selectivity for sensory location and upcoming choice, we calculated the discriminability index (d0 or
d-prime) between different trial conditions (Figures 5, S6G, and S6H). The discriminability index is defined as:

d0 =
m1 � m2

1

2
ðs1+s2Þ

Here m1 and m2 are themean firing rate of the neuron 0–300ms after stimulus onset for quantifying stimulus responses, or 0–130ms

beforemovement onset for quantifying choice coding, and s1 and s2 are the standard deviation of the firing rate across the respective

trial conditions.

To compare single neuron discriminability indices across brain regions, we first performed a one-way ANOVA on the mean of the

absolute value of the discriminability index across neurons of each recorded session for each brain region, which showed a signif-

icant difference between brain regions (visual location: F = 5.57, p < 10�3, auditory location: F = 5.67, p < 10�3, and upcoming choice:

F = 11.6, p < 10�9). To compare differences between individual brain regions, we fit a linear mixed effects model:

jd0j � Brain region+ ð1jMouseIDÞ
Here, jd0j is the absolute mean discrimination index across neurons, Brain region is a categorical fixed effect and MouseID is a

random effect on the intercept (Figures S6G–S6H). To compare single neuron discriminability indices between naive, trained mice

and values obtained by shuffling the condition labels, we performed Welch’s t test on the mean absolute discriminability index for

each experimental session (Figure 5).

Accumulator model
To investigate whether the structure of the sensory code in MOs can explain mouse behavior, we fed this code into an accumulator

model (Figure 6, similar to a drift diffusion model71). Since stimulus responses were sparse in MOs (140 auditory or visual location-

selective neurons total from all experiments, as defined by the criteria of the previous section, i.e. 6%), we combined neural activity

across all mice and experiments. To do so, we first obtained the PSTH for each stimulus condition, from�100ms to 300ms relative to

stimulus onset. We then simulated 360 ‘‘trials’’ per stimulus condition by generating surrogate spike trains from a Poisson process
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with intensity given by these PSTHs. The stimulus conditions include unisensory visual trials with contrasts of 10, 20, 40, and 80%,

unisensory auditory trials, and coherent and conflict audiovisual trials where the contrast is at 80%. This process yielded a time-

dependent rate vector xðtÞ for each trial, where t is time relative to stimulus onset.

The output of the accumulator model was a decision variable dðtÞ, produced by linearly accumulating neural activity:

dðtÞ = dðt � 1Þ+ xðtÞ$w
Here,w is a set of time-independent weights that were learned by the model to optimize the speed and accuracy of its responses

but were not fit to mouse behavior. The choice of the model is defined by the sign of the decision variable when it crosses one of the

thresholds: +1 or �1 for a rightward or leftward choice, and the reaction time of the model is the time of this threshold-crossing rela-

tive to stimulus onset (Figure 6D).

To learn the weight vectorw, we define a target decision variable y for each trial, set to 1 or �1 for rightward or leftward stimuli on

unisensory and coherent trials. On conflict trials, where there is no correct response, the target decision variable is randomly set to 1

or �1 with equal probability.

Theweights were learned byminimizing a loss function that compares the target decision variable with themodel’s output decision

variable for each trial:

LðdðtÞÞ =
X
t < 0

dðtÞ2 +
X
tR0

max ð0;1 � y dðtÞÞ

We used a mean-squared error loss before the stimulus onset (t < 0), to ensure that the model does not make a decision before the

stimulus onset. After the stimulus onset (tR0) we use a hinge-loss error, which is zero when the decision variable is above the

threshold for the correct choice and penalizes incorrect decisions and decision values below the decision threshold. The loss function

wasminimized with respect to the weights of themodel via gradient descent using the ADAM optimizer104 with a learning rate of 0.01,

and the gradient was obtained via automatic differentiation using the JAX library.105 The model was trained on 70% of the trials for

300 epochs, and its behavior was evaluated on the remaining 30% of the trials (Figures 6E–6H). To simulate the inactivation of the

visual cortex in the right hemisphere, we took the same learned model, but instead provided input where the activity of neurons that

were previously identified as visual-left preferring neurons were decreased by 60% (Figure 6G). During training, the decision bound-

aries were set to +1 and �1. To account for the choice bias that was observed in mice, we performed grid search on the decision

boundary values after model training in order to minimize the mean-squared error between the choice probability observed in the

mice and in the model averaged across all stimuli conditions (Figure 6E). Decision boundaries were only fit on trials without simulated

inactivation.

To simulate the inactivation of right MOs, we reduced the activity of right-hemisphere neurons by 60%. This manipulation did not

recapitulate the lateralized effect of MOs inactivation (Figure S7X), because MOs neurons preferring either direction of stimulus are

found equally in both hemispheres. To ask whether intra-hemispheric connections onto a downstream lateralized decision circuit

could explain the lateralized effects of MOs inactivation, we trained another accumulator model with weights from neurons in the

left and right hemisphere constrained to be positive and negative: those in the left hemisphere were constrained to have only zero

or positive weights, and those in the right hemisphere were constrained to have only zero or negative weights. Because spatial neu-

rons were bilaterally distributed, this constraint simulates a selective subsampling or connectional bias by downstream neurons,

such that in each hemisphere, only the activity that contributes to a contralateral decision is being utilized. This model was able

to predict the lateralized effect of MOs inactivation (Figure 6H). To test whether this weight-constrained model recapitulated the lat-

eralized effect of MOs inactivation better than the original accumulator model, we repeated the sampling and fitting procedure (as

described earlier) 100 times for each model and performed a two-sample unpaired t test on the mean-squared error between the

model’s prediction of the log-odds and the observed log-odds from mouse behavior (p < 0.01).

To test whether sensory code in the MOs of naive mice can produce the same behavior through the accumulator model

(Figures 6C, 6D, and 6F), we first subsampled the neurons recorded in the MOs of naive mice so that the total number of neurons

matched the number recorded in trainedmice. To select the auditory and visual spatial neurons to be used in the accumulator model,

we used the same shuffling procedure as above (see STARMethods section on quantifying single neuron discrimination time). How-

ever, we adjusted the threshold which defines statistical significance so that the number of neurons selected from naive mice to feed

into the accumulator model matched that used for trained mice. Once neurons were selected, we fit the accumulator model with the

same procedure used for trained mice (Figure 6E). This subsampling procedure was repeated 5 times, and the mean result across

repeated subsamples was used for visualization (Figures 6C, 6D, and 6F). To test whether the accumulator model fits (Figures 6E–6H)

were better than expected by chance, we compared the mean-squared error between the model’s prediction of the log odds,

logðpðRÞ =pðLÞÞ; with a null distribution obtained by fitting the same model after shuffling the stimulus conditions of each trial

100 times.

Optimally combining independent visual and auditory signals
Herewe show that optimally combining information from two inputs with independent noise requires the log odds be an additive func-

tion of the two inputs. This is a classical result of probability theory, whose significance to neuroscience has been discussed in several

prior works (e.g.1,2). We provide a proof for the specific case of a binary left/right choice based on auditory and visual information.
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Let S˛ fL;Rg represent the (left/right) location of the stimulus. A prior estimate for this location is captured by a prior probability

distribution pðSÞ: The two sensory inputs A and V follow conditional probability distributions pðV j SÞ and pðAj SÞ:We assume them to

be conditionally independent:

pðV ;Aj SÞ = pðV j SÞpðAj SÞ:
By Bayes’ theorem, the probability of the stimulus location given the inputs is:

pðSj V ;AÞ =
pðV ;Aj SÞpðSÞ

pðV ;AÞ =
pðV j SÞpðAj SÞpðSÞ

pðV ;AÞ
Write pðRÞ = pðS = RÞ and pðLÞ = pðS = LÞ. Then, the log odds is given by:

log

�
pðRj V ;AÞ
pðLj V ;AÞ

�
= log

�
pðV j RÞpðAj RÞpðRÞ=pðV ;AÞ
pðV j LÞpðAj LÞpðLÞ=pðV ;AÞ

�

= log

�
pðV j RÞ
pðV j LÞ

pðAj RÞ
pðAj LÞ

pðRÞ
pðLÞ

�

= log

�
pðV j RÞ
pðV j LÞ

�
+ log

�
pðA j RÞ
pðA j LÞ

�
+ log

�
pðRÞ
pðLÞ

�

The first term depends only on V, the second only on A, while the third is a constant. Thus, the log odds is an additive function:

log

�
pðR j V ;AÞ
pðL j V ;AÞ

�
= fðVÞ + gðAÞ+b

For a binary choice pðL j V ;AÞ = 1 � pðR j V ;AÞ, so we can use the fact that the inverse function of y = log
�

x
1� x

�
is the logistic

function x = sðyÞ = 1
1+e� y, to obtain the formula

pðR j V ;AÞ = sðfðVÞ + gðAÞ + bÞ
Thus, the assumption of independent noise in two sensorymodalities implies that an optimal estimate of stimulus location uses the

logistic function applied to an additive combination of the twomodalities. While some psychophysical models instead use cumulative

Gaussian models, the cumulative Gaussian function does not arise naturally in the same way.

In our task, the assumption that pðV j SÞ and pðAj SÞ are conditionally independent holds only approximately. The fact that mice

combine evidence additively thus indicates they are following a heuristic strategy.14 To demonstrate this, we compare the actual

values of pðV ;Aj SÞ with those expected under the assumption of independence (Figure S8). To compute pðV ;Aj SÞ we use Bayes’

theorem: pðV ;Aj SÞ = pðSjV ;AÞpðV ;AÞ=pðSÞ: We define the stimulus location S to be the direction of wheel turn that will lead to

reward on a particular trial. Thus, for unisensory or coherent multisensory stimuli on the right pðRjV ;AÞ = 1; for conflict stimuli

pðRjV ;AÞ = 0:5, and for unisensory or coherent multisensory stimuli on the left, pðRjV ;AÞ = 0. The prior probability pðRÞ = 0:5.

Thus pðV ;Aj RÞ is the fraction of trials where ðV ;AÞ was presented if V and A are in conflict; twice this if V and A are unisensory

or coherent right; and 0 if V and A are unisensory or coherent left. These probabilities (Figure S8A) are distinct from a conditional

independence model pðV j RÞpðAj RÞ obtained by multiplying the marginals of this distribution (Figure S8B).
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