912 research outputs found

    Mapping environmental injustices: pitfalls and potential of geographic information systems in assessing environmental health and equity.

    Get PDF
    Geographic Information Systems (GIS) have been used increasingly to map instances of environmental injustice, the disproportionate exposure of certain populations to environmental hazards. Some of the technical and analytic difficulties of mapping environmental injustice are outlined in this article, along with suggestions for using GIS to better assess and predict environmental health and equity. I examine 13 GIS-based environmental equity studies conducted within the past decade and use a study of noxious land use locations in the Bronx, New York, to illustrate and evaluate the differences in two common methods of determining exposure extent and the characteristics of proximate populations. Unresolved issues in mapping environmental equity and health include lack of comprehensive hazards databases; the inadequacy of current exposure indices; the need to develop realistic methodologies for determining the geographic extent of exposure and the characteristics of the affected populations; and the paucity and insufficiency of health assessment data. GIS have great potential to help us understand the spatial relationship between pollution and health. Refinements in exposure indices; the use of dispersion modeling and advanced proximity analysis; the application of neighborhood-scale analysis; and the consideration of other factors such as zoning and planning policies will enable more conclusive findings. The environmental equity studies reviewed in this article found a disproportionate environmental burden based on race and/or income. It is critical now to demonstrate correspondence between environmental burdens and adverse health impacts--to show the disproportionate effects of pollution rather than just the disproportionate distribution of pollution sources

    Acoustic Emission During Intergranular Stress Corrosion Cracking

    Get PDF
    The physical and chemical processes taking place during intergranular stress corrosion cracking (IGSCC), in particular the effects of impurities on cracking mechanisms, have been the subjects of a research program sponsored by the Division of Materials Science, Office of Basic Energy Science, U. S. Department of Energy at Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute. Acoustic emission (AE) was brought into the program because of the unique ability of AE methods to detect dynamic microscopic fracture processes. In this paper, the results of these tests are presented.</p

    Reflections on using a community-based and multisystem approach to transforming school-based intervention for children with developmental motor disorders

    Get PDF
    Evidence-based management of Developmental Coordination Disorder (DCD) in school-age children requires putting into practice the best and most current research findings, including evidence that early identification, self-management, prevention of secondary disability, and enhanced participation are the most appropriate foci of school-based occupational therapy. Partnering for Change (P4C) is a new school-based intervention based upon these principles that has been developed and evaluated in Ontario, Canada over an 8-year period. Our experience to date indicates that its implementation in schools is highly complex with involvement of multiple stakeholders across health and education sectors. In this paper, we describe and reflect upon our team’s experience in using community-based participatory action research, knowledge translation, and implementation science to transform evidence-informed practice with children who have DCD

    Predicting clinically unrecognized coronary artery disease: use of two- dimensional echocardiography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>2-D Echo is often performed in patients without history of coronary artery disease (CAD). We sought to determine echo features predictive of CAD.</p> <p>Methods</p> <p>2-D Echo of 328 patients without known CAD performed within one year prior to stress myocardial SPECT and angiography were reviewed. Echo features examined were left ventricular and atrial enlargement, LV hypertrophy, wall motion abnormality (WMA), LV ejection fraction (EF) < 50%, mitral annular calcification (MAC) and aortic sclerosis/stenosis (AS). High risk myocardial perfusion abnormality (MPA) was defined as >15% LV perfusion defect or multivessel distribution. Severe coronary artery stenosis (CAS) was defined as left main, 3 VD or 2VD involving proximal LAD.</p> <p>Results</p> <p>The mean age was 62 ± 13 years, 59% men, 29% diabetic (DM) and 148 (45%) had > 2 risk factors. Pharmacologic stress was performed in 109 patients (33%). MPA was present in 200 pts (60%) of which, 137 were high risk. CAS was present in 166 pts (51%), 75 were severe. Of 87 patients with WMA, 83% had MPA and 78% had CAS. Multivariate analysis identified age >65, male, inability to exercise, DM, WMA, MAC and AS as independent predictors of MPA and CAS. Independent predictors of high risk MPA and severe CAS were age, DM, inability to exercise and WMA.</p> <p>2-D echo findings offered incremental value over clinical information in predicting CAD by angiography. (Chi square: 360 vs. 320 p = 0.02).</p> <p>Conclusion</p> <p>2-D Echo was valuable in predicting presence of physiological and anatomical CAD in addition to clinical information.</p

    Systematic identification of abundant A-to-I editing sites in the human transcriptome

    Full text link
    RNA editing by members of the double-stranded RNA-specific ADAR family leads to site-specific conversion of adenosine to inosine (A-to-I) in precursor messenger RNAs. Editing by ADARs is believed to occur in all metazoa, and is essential for mammalian development. Currently, only a limited number of human ADAR substrates are known, while indirect evidence suggests a substantial fraction of all pre-mRNAs being affected. Here we describe a computational search for ADAR editing sites in the human transcriptome, using millions of available expressed sequences. 12,723 A-to-I editing sites were mapped in 1,637 different genes, with an estimated accuracy of 95%, raising the number of known editing sites by two orders of magnitude. We experimentally validated our method by verifying the occurrence of editing in 26 novel substrates. A-to-I editing in humans primarily occurs in non-coding regions of the RNA, typically in Alu repeats. Analysis of the large set of editing sites indicates the role of editing in controlling dsRNA stability.Comment: Pre-print version. See http://dx.doi.org/10.1038/nbt996 for a reprin

    Electron-scale measurements of magnetic reconnection in space

    No full text
    Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using very high time resolution measurements, NASA’s Magnetospheric Multiscale Mission (MMS) has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth’s magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy, (ii) measured the electric field and current, which together cause the dissipation of magnetic energy, and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region

    Temporal Dynamics of European Bat Lyssavirus Type 1 and Survival of Myotis myotis Bats in Natural Colonies

    Get PDF
    Many emerging RNA viruses of public health concern have recently been detected in bats. However, the dynamics of these viruses in natural bat colonies is presently unknown. Consequently, prediction of the spread of these viruses and the establishment of appropriate control measures are hindered by a lack of information. To this aim, we collected epidemiological, virological and ecological data during a twelve-year longitudinal study in two colonies of insectivorous bats (Myotis myotis) located in Spain and infected by the most common bat lyssavirus found in Europe, the European bat lyssavirus subtype 1 (EBLV-1). This active survey demonstrates that cyclic lyssavirus infections occurred with periodic oscillations in the number of susceptible, immune and infected bats. Persistence of immunity for more than one year was detected in some individuals. These data were further used to feed models to analyze the temporal dynamics of EBLV-1 and the survival rate of bats. According to these models, the infection is characterized by a predicted low basic reproductive rate (R0 = 1.706) and a short infectious period (D = 5.1 days). In contrast to observations in most non-flying animals infected with rabies, the survival model shows no variation in mortality after EBLV-1 infection of M. myotis. These findings have considerable public health implications in terms of management of colonies where lyssavirus-positive bats have been recorded and confirm the potential risk of rabies transmission to humans. A greater understanding of the dynamics of lyssavirus in bat colonies also provides a model to study how bats contribute to the maintenance and transmission of other viruses of public health concern

    The Transcriptional Response in Human Umbilical Vein Endothelial Cells Exposed to Insulin: A Dynamic Gene Expression Approach

    Get PDF
    BACKGROUND: In diabetes chronic hyperinsulinemia contributes to the instability of the atherosclerotic plaque and stimulates cellular proliferation through the activation of the MAP kinases, which in turn regulate cellular proliferation. However, it is not known whether insulin itself could increase the transcription of specific genes for cellular proliferation in the endothelium. Hence, the characterization of transcriptional modifications in endothelium is an important step for a better understanding of the mechanism of insulin action and the relationship between endothelial cell dysfunction and insulin resistance. METHODOLOGY AND PRINCIPAL FINDINGS: The transcriptional response of endothelial cells in the 440 minutes following insulin stimulation was monitored using microarrays and compared to a control condition. About 1700 genes were selected as differentially expressed based on their treated minus control profile, thus allowing the detection of even small but systematic changes in gene expression. Genes were clustered in 7 groups according to their time expression profile and classified into 15 functional categories that can support the biological effects of insulin, based on Gene Ontology enrichment analysis. In terms of endothelial function, the most prominent processes affected were NADH dehydrogenase activity, N-terminal myristoylation domain binding, nitric-oxide synthase regulator activity and growth factor binding. Pathway-based enrichment analysis revealed "Electron Transport Chain" significantly enriched. Results were validated on genes belonging to "Electron Transport Chain" pathway, using quantitative RT-PCR. CONCLUSIONS: As far as we know, this is the first systematic study in the literature monitoring transcriptional response to insulin in endothelial cells, in a time series microarray experiment. Since chronic hyperinsulinemia contributes to the instability of the atherosclerotic plaque and stimulates cellular proliferation, some of the genes identified in the present work are potential novel candidates in diabetes complications related to endothelial dysfunction

    Malignant melanoma arising from a perianal fistula and harbouring a BRAF gene mutation: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melanoma of the anal region is a very uncommon disease, accounting for only 0.2-0.3% of all melanoma cases. Mutations of the <it>BRAF </it>gene are usually absent in melanomas occurring in this region as well as in other sun-protected regions. The development of a tumour in a longstanding perianal fistula is also extremely rare. More frequent is the case of a tumour presenting as a fistula, that is, the fistula being a consequence of the cancerous process, although we have found only two cases of fistula-generating melanomas reported in the literature.</p> <p>Case Presentation</p> <p>Here we report the case of a 38-year-old male who presented with a perianal fistula of four years of evolution. Histopathological examination of the fistulous tract confirmed the presence of malignant melanoma. Due to the small size and the central location of the melanoma inside the fistulous tract, we believe the melanoma reported here developed in the epithelium of the fistula once the latter was already formed. Resected sentinel lymph nodes were negative and the patient, after going through a wide local excision, remains disease-free nine years after diagnosis. DNA obtained from melanoma tissue was analysed by automated direct sequencing and the <it>V600E </it>(<it>T1799A</it>) mutation was detected in exon 15 of the <it>BRAF </it>gene.</p> <p>Conclusion</p> <p>Since fistulae experience persistent inflammation, the fact that this melanoma harbours a <it>BRAF </it>mutation strengthens the view that oxidative stress caused by inflammatory processes plays an important role in the genesis of <it>BRAF </it>gene mutations.</p
    corecore