42 research outputs found
Choline Dehydrogenase Polymorphism rs12676 Is a Functional Variation and Is Associated with Changes in Human Sperm Cell Function
Approximately 15% of couples are affected by infertility and up to half of these cases arise from male factor infertility. Unidentified genetic aberrations such as chromosomal deletions, translocations and single nucleotide polymorphisms (SNPs) may be the underlying cause of many cases of idiopathic male infertility. Deletion of the choline dehydrogenase (Chdh) gene in mice results in decreased male fertility due to diminished sperm motility; sperm from Chdh−/− males have decreased ATP concentrations likely stemming from abnormal sperm mitochondrial morphology and function in these cells. Several SNPs have been identified in the human CHDH gene that may result in altered CHDH enzymatic activity. rs12676 (G233T), a non-synonymous SNP located in the CHDH coding region, is associated with increased susceptibility to dietary choline deficiency and risk of breast cancer. We now report evidence that this SNP is also associated with altered sperm motility patterns and dysmorphic mitochondrial structure in sperm. Sperm produced by men who are GT or TT for rs12676 have 40% and 73% lower ATP concentrations, respectively, in their sperm. rs12676 is associated with decreased CHDH protein in sperm and hepatocytes. A second SNP located in the coding region of IL17BR, rs1025689, is linked to altered sperm motility characteristics and changes in choline metabolite concentrations in sperm
The strengths and difficulties questionnaire as a predictor of parent-reported diagnosis of autism spectrum disorder and attention deficit hyperactivity disorder
notes: PMCID: PMC3848967This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.The Strengths and Difficulties Questionnaire (SDQ) is widely used as an international standardised instrument measuring child behaviour. The primary aim of our study was to examine whether behavioral symptoms measured by SDQ were elevated among children with autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) relative to the rest of the population, and to examine the predictive value of the SDQ for outcome of parent-reported clinical diagnosis of ASD/ADHD. A secondary aim was to examine the extent of overlap in symptoms between children diagnosed with these two disorders, as measured by the SDQ subscales. A cross-sectional secondary analysis of data from the Millennium Birth Cohort (n = 19,519), was conducted. Data were weighted to be representative of the UK population as a whole. ADHD or ASD identified by a medical doctor or health professional were reported by parents in 2008 and this was the case definition of diagnosis; (ADHD n = 173, ASD n = 209, excluding twins and triplets). Study children's ages ranged from 6.3-8.2 years; (mean 7.2 years). Logistic regression was used to examine the association between the parent-reported clinical diagnosis of ASD/ADHD and teacher and parent-reported SDQ subscales. All SDQ subscales were strongly associated with both ASD and ADHD. There was substantial co-occurrence of behavioral difficulties between children diagnosed with ASD and those diagnosed with ADHD. After adjustment for other subscales, the final model for ADHD, contained hyperactivity/inattention and impact symptoms only and had a sensitivity of 91% and specificity of 90%; (AUC) = 0.94 (95% CI, 0.90-0.97). The final model for ASD was composed of all subscales except the 'peer problems' scales, indicating of the complexity of behavioural difficulties that may accompany ASD. A threshold of 0.03 produced model sensitivity and specificity of 79% and 93% respectively; AUC = 0.90 (95% CI, 0.86-0.95). The results support changes to DSM-5 removing exclusivity clauses.ESRCNational Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) for the South West
Peninsul
Basement membrane components are key players in specialized extracellular matrices
More than three decades ago, basement membranes (BMs) were described as membrane-like structures capable of isolating a cell from and connecting a cell to its environment. Since this time, it has been revealed that BMs are specialized extracellular matrices (sECMs) with unique components that support important functions including differentiation, proliferation, migration, and chemotaxis of cells during development. The composition of these sECM is as unique as the tissues to which they are localized, opening the possibility that such matrices can fulfill distinct functions. Changes in BM composition play significant roles in facilitating the development of various diseases. Furthermore, tissues have to provide sECM for their stem cells during development and for their adult life. Here, we briefly review the latest research on these unique sECM and their components with a special emphasis on embryonic and adult stem cells and their niches