12 research outputs found

    Involvement of Skeletal Muscle Gene Regulatory Network in Susceptibility to Wound Infection Following Trauma

    Get PDF
    Despite recent advances in our understanding the pathophysiology of trauma, the basis of the predisposition of trauma patients to infection remains unclear. A Drosophila melanogaster/Pseudomonas aeruginosa injury and infection model was used to identify host genetic components that contribute to the hyper-susceptibility to infection that follows severe trauma. We show that P. aeruginosa compromises skeletal muscle gene (SMG) expression at the injury site to promote infection. We demonstrate that activation of SMG structural components is under the control of cJun-N-terminal Kinase (JNK) Kinase, Hemipterous (Hep), and activation of this pathway promotes local resistance to P. aeruginosa in flies and mice. Our study links SMG expression and function to increased susceptibility to infection, and suggests that P. aeruginosa affects SMG homeostasis locally by restricting SMG expression in injured skeletal muscle tissue. Local potentiation of these host responses, and/or inhibition of their suppression by virulent P. aeruginosa cells, could lead to novel therapies that prevent or treat deleterious and potentially fatal infections in severely injured individuals

    Giant right ventricular outflow tract thrombus in hereditary spherocytosis: a case report

    Get PDF
    Background: In hereditary spherocytosis with severe anemia, splenectomy is a recommended treatment. However, the spleen carries an important role both in immune function and coagulation. The increased risk of bacterial infections associated with splenectomy is well known. Recently, hypercoagulation disorders have also been linked to splenectomy through loss of regulation of platelet activity, loss of filtering function and post-splenectomy thrombocytosis. Case presentation: A 28 year-old smoking women who had previously undergone splenectomy due to hereditary spherocytosis with a moderate thrombocytosis (platelet count 553–635*109/L), presented with recurrent episodes of pulmonary embolisms. Further examination by multimodality cardiac imaging demonstrated a giant chronic thrombus in the right ventricular outflow tract, which eventually had to be surgically removed. Conclusions: The present case highlights the increased risk of severe thromboembolic complications following therapeutic splenectomy in hereditary spherocytosis, and emphasis the important role of multimodality cardiac imaging in recurrent pulmonary embolism, diagnosing a giant chronic thrombus in the right ventricular outflow tract

    β-arrestin-2 in PAR-1-biased signaling has a crucial role in endothelial function via PDGF-β in stroke

    No full text
    Abstract Thrombin aggravates ischemic stroke and activated protein C (APC) has a neuroprotective effect. Both proteases interact with protease-activated receptor 1, which exhibits functional selectivity and leads to G-protein- and β-arrestin-mediated-biased signal transduction. We focused on the effect of β-arrestin in PAR-1-biased signaling on endothelial function after stroke or high-fat diet (HFD). Thrombin had a rapid disruptive effect on endothelial function, but APC had a slow protective effect. Paralleled by prolonged MAPK 42/44 signaling activation by APC via β-arrestin-2, a lower cleavage rate of PAR-1 for APC than thrombin was quantitatively visualized by bioluminescence video imaging. HFD-fed mice showed lower β-arrestin-2 levels and more severe ischemic injury. The expression of β-arrestin-2 in capillaries and PDGF-β secretion in HFD-fed mice were reduced in penumbra lesions. These results suggested that β-arrestin-2-MAPK-PDGF-β signaling enhanced protection of endothelial function and barrier integrity after stroke
    corecore