84 research outputs found

    Scanning tunneling microscopy and spectroscopy at low temperatures of the (110) surface of Te doped GaAs single crystals

    Full text link
    We have performed voltage dependent imaging and spatially resolved spectroscopy on the (110) surface of Te doped GaAs single crystals with a low temperature scanning tunneling microscope (STM). A large fraction of the observed defects are identified as Te dopant atoms which can be observed down to the fifth subsurface layer. For negative sample voltages, the dopant atoms are surrounded by Friedel charge density oscillations. Spatially resolved spectroscopy above the dopant atoms and above defect free areas of the GaAs (110) surface reveals the presence of conductance peaks inside the semiconductor band gap. The appearance of the peaks can be linked to charges residing on states which are localized within the tunnel junction area. We show that these localized states can be present on the doped GaAs surface as well as at the STM tip apex.Comment: 8 pages, 8 figures, accepted for publication in PR

    Electronic and structural properties of vacancies on and below the GaP(110) surface

    Full text link
    We have performed total-energy density-functional calculations using first-principles pseudopotentials to determine the atomic and electronic structure of neutral surface and subsurface vacancies at the GaP(110) surface. The cation as well as the anion surface vacancy show a pronounced inward relaxation of the three nearest neighbor atoms towards the vacancy while the surface point-group symmetry is maintained. For both types of vacancies we find a singly occupied level at mid gap. Subsurface vacancies below the second layer display essentially the same properties as bulk defects. Our results for vacancies in the second layer show features not observed for either surface or bulk vacancies: Large relaxations occur and both defects are unstable against the formation of antisite vacancy complexes. Simulating scanning tunneling microscope pictures of the different vacancies we find excellent agreement with experimental data for the surface vacancies and predict the signatures of subsurface vacancies.Comment: 10 pages, 6 figures, Submitted to Phys. Rev. B, Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    The cost-effectiveness of increasing alcohol taxes: a modelling study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excessive alcohol use increases risks of chronic diseases such as coronary heart disease and several types of cancer, with associated losses of quality of life and life-years. Alcohol taxes can be considered as a public health instrument as they are known to be able to decrease alcohol consumption. In this paper, we estimate the cost-effectiveness of an alcohol tax increase for the entire Dutch population from a health-care perspective focusing on health benefits and health-care costs in alcohol users.</p> <p>Methods</p> <p>The chronic disease model of the National Institute for Public Health and the Environment was used to extrapolate from decreased alcohol consumption due to tax increases to effects on health-care costs, life-years gained and quality-adjusted life-years gained, A Dutch scenario in which tax increases for beer are planned, and a Swedish scenario representing one of the highest alcohol taxes in Europe, were compared with current practice in the Netherlands. To estimate cost-effectiveness ratios, yearly differences in model outcomes between intervention and current practice scenarios were discounted and added over the time horizon of 100 years to find net present values for incremental life-years gained, quality-adjusted life-years gained, and health-care costs.</p> <p>Results</p> <p>In the Swedish scenario, many more quality-adjusted life-years were gained than in the Dutch scenario, but both scenarios had almost equal incremental cost-effectiveness ratios: €5100 per quality-adjusted life-year and €5300 per quality-adjusted life-year, respectively.</p> <p>Conclusion</p> <p>Focusing on health-care costs and health consequences for drinkers, an alcohol tax increase is a cost-effective policy instrument.</p

    Estimating health-adjusted life expectancy conditional on risk factors: results for smoking and obesity

    Get PDF
    BACKGROUND: Smoking and obesity are risk factors causing a large burden of disease. To help formulate and prioritize among smoking and obesity prevention activities, estimations of health-adjusted life expectancy (HALE) for cohorts that differ solely in their lifestyle (e.g. smoking vs. non smoking) can provide valuable information. Furthermore, in combination with estimates of life expectancy (LE), it can be tested whether prevention of obesity and smoking results in compression of morbidity. METHODS: Using a dynamic population model that calculates the incidence of chronic disease conditional on epidemiological risk factors, we estimated LE and HALE at age 20 for a cohort of smokers with a normal weight (BMI < 25), a cohort of non-smoking obese people (BMI>30) and a cohort of 'healthy living' people (i.e. non smoking with a BMI < 25). Health state valuations for the different cohorts were calculated using the estimated disease prevalence rates in combination with data from the Dutch Burden of Disease study. Health state valuations are multiplied with life years to estimate HALE. Absolute compression of morbidity is defined as a reduction in unhealthy life expectancy (LE-HALE) and relative compression as a reduction in the proportion of life lived in good health (LE-HALE)/LE. RESULTS: Estimates of HALE are highest for a 'healthy living' cohort (54.8 years for men and 55.4 years for women at age 20). Differences in HALE compared to 'healthy living' men at age 20 are 7.8 and 4.6 for respectively smoking and obese men. Differences in HALE compared to 'healthy living' women at age 20 are 6.0 and 4.5 for respectively smoking and obese women. Unhealthy life expectancy is about equal for all cohorts, meaning that successful prevention would not result in absolute compression of morbidity. Sensitivity analyses demonstrate that although estimates of LE and HALE are sensitive to changes in disease epidemiology, differences in LE and HALE between the different cohorts are fairly robust. In most cases, elimination of smoking or obesity does not result in absolute compression of morbidity but slightly increases the part of life lived in good health. CONCLUSION: Differences in HALE between smoking, obese and 'healthy living' cohorts are substantial and similar to differences in LE. However, our results do not indicate that substantial compression of morbidity is to be expected as a result of successful smoking or obesity prevention

    The Effect of Sustained Compression on Oxygen Metabolic Transport in the Intervertebral Disc Decreases with Degenerative Changes

    Get PDF
    Intervertebral disc metabolic transport is essential to the functional spine and provides the cells with the nutrients necessary to tissue maintenance. Disc degenerative changes alter the tissue mechanics, but interactions between mechanical loading and disc transport are still an open issue. A poromechanical finite element model of the human disc was coupled with oxygen and lactate transport models. Deformations and fluid flow were linked to transport predictions by including strain-dependent diffusion and advection. The two solute transport models were also coupled to account for cell metabolism. With this approach, the relevance of metabolic and mechano-transport couplings were assessed in the healthy disc under loading-recovery daily compression. Disc height, cell density and material degenerative changes were parametrically simulated to study their influence on the calculated solute concentrations. The effects of load frequency and amplitude were also studied in the healthy disc by considering short periods of cyclic compression. Results indicate that external loads influence the oxygen and lactate regional distributions within the disc when large volume changes modify diffusion distances and diffusivities, especially when healthy disc properties are simulated. Advection was negligible under both sustained and cyclic compression. Simulating degeneration, mechanical changes inhibited the mechanical effect on transport while disc height, fluid content, nucleus pressure and overall cell density reductions affected significantly transport predictions. For the healthy disc, nutrient concentration patterns depended mostly on the time of sustained compression and recovery. The relevant effect of cell density on the metabolic transport indicates the disturbance of cell number as a possible onset for disc degeneration via alteration of the metabolic balance. Results also suggest that healthy disc properties have a positive effect of loading on metabolic transport. Such relation, relevant to the maintenance of the tissue functional composition, would therefore link disc function with disc nutrition

    Mapping the Conformational Dynamics and Pathways of Spontaneous Steric Zipper Peptide Oligomerization

    Get PDF
    The process of protein misfolding and self-assembly into various, polymorphic aggregates is associated with a number of important neurodegenerative diseases. Only recently, crystal structures of several short peptides have provided detailed structural insights into -sheet rich aggregates, known as amyloid fibrils. Knowledge about early events of the formation and interconversion of small oligomeric states, an inevitable step in the cascade of peptide self-assembly, however, remains still limited
    • …
    corecore