4,690 research outputs found

    Events and Piecewise Deterministic Dynamics in Event-Enhanced Quantum Theory

    Get PDF
    We enhance the standard formalism of quantum theory to enable events. The concepts of experiment and of measurement are defined. Dynamics is given by Liouville's equation that couples quantum system to a classical one. It implies a unique Markov process involving quantum jumps, classical events and describing sample histories of individual systems.Comment: to appear in Phys. Lett. A, 12 pages, Latex article.st

    Experimental Falsification of Leggett's Non-Local Variable Model

    Full text link
    Bell's theorem guarantees that no model based on local variables can reproduce quantum correlations. Also some models based on non-local variables, if subject to apparently "reasonable" constraints, may fail to reproduce quantum physics. In this paper, we introduce a family of inequalities, which allow testing Leggett's non-local model versus quantum physics, and which can be tested in an experiment without additional assumptions. Our experimental data falsify Leggett's model and are in agreement with quantum predictions.Comment: 5 pages, 3 figures, 1 tabl

    The Tilt of the Fundamental Plane: Three-quarters Structural Nonhomology, One-quarter Stellar Population

    Full text link
    The variation of the mass-to-light ratios M/L of early type galaxies as function of their luminosities L is investigated. It is shown that the tilt beta=0.27 (in the B--band) of the fundamental plane relation M/L ~ L^{beta} can be understood as a combination of two effects: about one-quarter (i.e. dbeta =0.07) is a result of systematic variations of the stellar population properties with increasing luminosity. The remaining three-quarters (i.e. dbeta =0.2) can be completely attributed to nonhomology effects that lead to a systematic change of the surface brightness profiles with increasing luminosity. Consequently, the observed tilt in the K-band (beta=0.17) where stellar population effects are negligible, is explained by nonhomology effects alone. After correcting for nonhomology, the mean value of the mass-to-light ratio of elliptical galaxies (M/L_B) is 7.1+-2.8 (1 sigma scatter).Comment: 8 pages, 3 figures, ApJL, 600, 39, minor changes made to match the published versio

    On Quantum Jumps, Events and Spontaneous Localization Models

    Get PDF
    We propose a definite meaning to the concepts of "experiment", "measurement" and "event" in the event-enhanced formalism of quantum theory. A minimal piecewise deterministic process is given that can be used for a computer simulation of real time series of experiments on single quantum objects. As an example a generalized cloud chamber is described, including multiparticle case. Relation to the GRW spontaneous localization model is discussed. The second revised version of the paper contains references to papers by other authors that are are aiming in the same direction: to enhance quantum theory in such a way that it will provide stochastic description of events triggered by individual quantum systems.Comment: 20 page

    Fundamental Aspects of the ISM Fractality

    Get PDF
    The ubiquitous clumpy state of the ISM raises a fundamental and open problem of physics, which is the correct statistical treatment of systems dominated by long range interactions. A simple solvable hierarchical model is presented which explains why systems dominated by gravity prefer to adopt a fractal dimension around 2 or less, like the cold ISM and large scale structures. This has direct relation with the general transparency, or blackness, of the Universe.Comment: 6 pages, LaTeX2e, crckapb macro, no figure, uuencoded compressed tar file. To be published in the proceeedings of the "Dust-Morphology" conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer Dordrecht

    Transient backbending behavior in the Ising model with fixed magnetization

    Full text link
    The physical origin of the backbendings in the equations of state of finite but not necessarily small systems is studied in the Ising model with fixed magnetization (IMFM) by means of the topological properties of the observable distributions and the analysis of the largest cluster with increasing lattice size. Looking at the convexity anomalies of the IMFM thermodynamic potential, it is shown that the order of the transition at the thermodynamic limit can be recognized in finite systems independently of the lattice size. General statistical mechanics arguments and analytical calculations suggest that the backbending in the caloric curve is a transient behaviour which should not converge to a plateau in the thermodynamic limit, while the first order transition is signalled by a discontinuity in other observables.Comment: 24 pages, 11 figure

    Field deployments of a self-contained subsea platform for acoustic monitoring of the environment around marine renewable energy structurea

    Get PDF
    The drive towards sustainable energy has seen rapid development of marine renewable energy devices, and current efforts are focusing on wave and tidal stream energy. The NERC/DEFRA collaboration FLOWBEC-4D (Flow, Water column & Benthic Ecology 4D) is addressing the lack of knowledge of the environmental and ecological effects of installing and operating large arrays of wave and tidal energy devices. The FLOWBEC sonar platform combines a number of instruments to record information at a range of physical and multi-trophic levels. Data are recorded at a resolution of several measurements per second, for durations of 2 weeks to capture an entire spring-neap tidal cycle. An upward-facing multifrequency Simrad EK60 echosounder (38, 120 and 200 kHz) is synchronized with an upward-facing Imagenex 837B Delta T multibeam sonar (120° × 20° beamwidth, 260 kHz) aligned with the tidal flow. An ADV is used for local current measurements and a fluorometer is used to measure chlorophyll (as a proxy for plankton) and turbidity. The platform is self-contained with no cables or anchors, facilitating rapid deployment and recovery in high-energy sites and flexibility in allowing baseline data to be gathered. Five 2-week deployments were completed in 2012 and 2013 at wave and tidal energy sites, both in the presence and absence of renewable energy structures. These surveys were conducted at the European Marine Energy Centre, Orkney, UK. Algorithms for noise removal, target detection and target tracking have been written using a combination of LabVIEW, MATLAB and Echoview. Target morphology, behavior and frequency response are used to aid target classification, with concurrent shore-based seabird observations used to ground truth the acoustic data. Using this information, the depth preference and interactions of birds, fish schools and marine mammals with renewable energy structures can be tracked. Seabird and mammal dive profiles, predator-prey interactions a- d the effect of hydrodynamic processes during foraging events throughout the water column can also be analyzed. These datasets offer insights into how fish, seabirds and marine mammals successfully forage within dynamic marine habitats and also whether individuals face collision risks with tidal stream turbines. Measurements from the subsea platform are complemented by 3D hydrodynamic model data and concurrent shore-based marine X-band radar. This range of concurrent fine-scale information across physical and trophic levels will improve our understanding of how the fine-scale physical influence of currents, waves and turbulence at tidal and wave energy sites affect the behavior of marine wildlife, and how tidal and wave energy devices might alter the behavior of such wildlife. Together, the results from these deployments increase our environmental understanding of the physical and ecological effects of installing and operating marine renewable energy devices. These results can be used to guide marine spatial planning, device design, licensing and operation, as individual devices are scaled up to arrays and new sites are considered. The combination of our current technology and analytical approach can help to de-risk the licensing process by providing a higher level of certainty about the behavior of a range of mobile marine species in high energy environments. It is likely that this approach will lead to greater mechanistic understanding of how and why mobile predators use these high energy areas for foraging. If a fuller understanding and quantification can be achieved at single demonstration scales, and these are found to be similar, then the predictive power of the outcomes might lead to a wider strategic approach to monitoring and possibly lead to a reduction in the level of monitoring required at each commercial site

    How Events Come Into Being: EEQT, Particle Tracks, Quantum Chaos, and Tunneling Time

    Get PDF
    In sections 1 and 2 we review Event Enhanced Quantum Theory (EEQT). In section 3 we discuss applications of EEQT to tunneling time, and compare its quantitative predictions with other approaches, in particular with B\"uttiker-Larmor and Bohm trajectory approach. In section 4 we discuss quantum chaos and quantum fractals resulting from simultaneous continuous monitoring of several non-commuting observables. In particular we show self-similar, non-linear, iterated function system-type, patterns arising from quantum jumps and from the associated Markov operator. Concluding remarks pointing to possible future development of EEQT are given in section 5.Comment: latex, 27 pages, 7 postscript figures. Paper submitted to Proc. Conference "Mysteries, Puzzles And Paradoxes In Quantum Mechanics, Workshop on Entanglement And Decoherence, Palazzo Feltrinelli, Gargnano, Garda Lake, Italy, 20-25 September, 199

    Quantum correlations versus Multisimultaneity: an experimental test

    Get PDF
    Multisimultaneity is a causal model of relativistic quantum physics which assigns a real time ordering to any set of events, much in the spirit of the pilot-wave picture. Contrary to standard quantum mechanics, it predicts a disappearance of the correlations in a Bell-type experiment when both analysers are in relative motion such that, each one in its own inertial reference frame, is first to select the output of the photons. We tested this prediction using acousto-optic modulators as moving beam-splitters and interferometers separated by 55 m. We didn't observe any disappearance of the correlations, thus refuting Multisimultaneity.Comment: 4 pages, 3 figures, RevTex 4 versio
    corecore