2,271 research outputs found

    Properties of the Broad-Range Nematic Phase of a Laterally Linked H-Shaped Liquid Crystal Dimer

    Full text link
    In search for novel nematic materials, a laterally linked H-shaped liquid crystal dimer have been synthesized and characterized. The distinct feature of the material is a very broad temperature range (about 50 oC) of the nematic phase, which is in contrast with other reported H-dimers that show predominantly smectic phases. The material exhibits interesting textural features at the scale of nanometers (presence of smectic clusters) and at the macroscopic scales. Namely, at a certain temperature, the flat samples of the material show occurrence of domain walls. These domain walls are caused by the surface anchoring transition and separate regions with differently tilted director. Both above and below this transition temperature the material represents a uniaxial nematic, as confirmed by the studies of defects in flat samples and samples with colloidal inclusions, freely suspended drops, X-ray diffraction and transmission electron microscopy.Comment: 30 pages (including Supplementary Information), 7 Figure

    Mechanisms and impacts of an incentive-based conservation program with evidence from a randomized control trial.

    Get PDF
    Conservation science needs more high-quality impact evaluations, especially ones that explore mechanisms of success or failure. Randomized control trials (RCTs) provide particularly robust evidence of the effectiveness of interventions (although they have been criticized as reductionist and unable to provide insights into mechanisms), but there have been few such experiments investigating conservation at the landscape scale. We explored the impact of Watershared, an incentive-based conservation program in the Bolivian Andes, with one of the few RCTs of landscape-scale conservation in existence. There is strong interest in such incentive-based conservation approaches as some argue they can avoid negative social impacts sometimes associated with protected areas. We focused on social and environmental outcomes based on responses from a household survey in 129 communities randomly allocated to control or treatment (conducted both at the baseline in 2010 and repeated in 2015-2016). We controlled for incomplete program uptake by combining standard RCT analysis with matching methods and investigated mechanisms by exploring intermediate and ultimate outcomes according to the underlying theory of change. Previous analyses, focused on single biophysical outcomes, showed that over its first 5 years Watershared did not slow deforestation or improve water quality at the landscape scale. We found that Watershared influenced some outcomes measured using the survey, but the effects were complex, and some were unexpected. We thus demonstrated how RCTs can provide insights into the pathways of impact, as well as whether an intervention has impact. This paper, one of the first registered reports in conservation science, demonstrates how preregistration can help make complex research designs more transparent, avoid cherry picking, and reduce publication bias

    Mid-mantle deformation inferred from seismic anisotropy

    Get PDF
    With time, convective processes in the Earth's mantle will tend to align crystals, grains and inclusions. This mantle fabric is detectable seismologically, as it produces an anisotropy in material properties—in particular, a directional dependence in seismic-wave velocity. This alignment is enhanced at the boundaries of the mantle where there are rapid changes in the direction and magnitude of mantle flow, and therefore most observations of anisotropy are confined to the uppermost mantle or lithosphere and the lowermost-mantle analogue of the lithosphere, the D" region. Here we present evidence from shear-wave splitting measurements for mid-mantle anisotropy in the vicinity of the 660-km discontinuity, the boundary between the upper and lower mantle. Deep-focus earthquakes in the Tonga–Kermadec and New Hebrides subduction zones recorded at Australian seismograph stations record some of the largest values of shear-wave splitting hitherto reported. The results suggest that, at least locally, there may exist a mid-mantle boundary layer, which could indicate the impediment of flow between the upper and lower mantle in this region

    Experimental investigation of classical and quantum correlations under decoherence

    Full text link
    It is well known that many operations in quantum information processing depend largely on a special kind of quantum correlation, that is, entanglement. However, there are also quantum tasks that display the quantum advantage without entanglement. Distinguishing classical and quantum correlations in quantum systems is therefore of both fundamental and practical importance. In consideration of the unavoidable interaction between correlated systems and the environment, understanding the dynamics of correlations would stimulate great interest. In this study, we investigate the dynamics of different kinds of bipartite correlations in an all-optical experimental setup. The sudden change in behaviour in the decay rates of correlations and their immunity against certain decoherences are shown. Moreover, quantum correlation is observed to be larger than classical correlation, which disproves the early conjecture that classical correlation is always greater than quantum correlation. Our observations may be important for quantum information processing.Comment: 7 pages, 4 figures, to appear in Nature Communication

    Can HRCT be used as a marker of airway remodelling in children with difficult asthma?

    Get PDF
    BACKGROUND: Whole airway wall thickening on high resolution computed tomography (HRCT) is reported to parallel thickening of the bronchial epithelial reticular basement membrane (RBM) in adult asthmatics. A similar relationship in children with difficult asthma (DA), in whom RBM thickening is a known feature, may allow the use of HRCT as a non-invasive marker of airway remodelling. We evaluated this relationship in children with DA. METHODS: 27 children (median age 10.5 [range 4.1-16.7] years) with DA, underwent endobronchial biopsy from the right lower lobe and HRCT less than 4 months apart. HRCTs were assessed for bronchial wall thickening (BWT) of the right lower lobe using semi-quantitative and quantitative scoring techniques. The semi-quantitative score (grade 0-4) was an overall assessment of BWT of all clearly identifiable airways in HRCT scans. The quantitative score (BWT %; defined as [airway outer diameter - airway lumen diameter]/airway outer diameter x100) was the average score of all airways visible and calculated using electronic endpoint callipers. RBM thickness in endobronchial biopsies was measured using image analysis. 23/27 subjects performed spirometry and the relationships between RBM thickness and BWT with airflow obstruction evaluated. RESULTS: Median RBM thickness in endobronchial biopsies was 6.7(range 4.6-10.0) microm. Median qualitative score for BWT of the right lower lobe was 1(range 0-1.5) and quantitative score was 54.3 (range 48.2-65.6)%. There was no relationship between RBM thickness and BWT in the right lower lobe using either scoring technique. No relationship was found between FEV1 and BWT or RBM thickness. CONCLUSION: Although a relationship between RBM thickness and BWT on HRCT has been found in adults with asthma, this relationship does not appear to hold true in children with D

    Metabolism of ticagrelor in patients with acute coronary syndromes.

    Get PDF
    © The Author(s) 2018Ticagrelor is a state-of-the-art antiplatelet agent used for the treatment of patients with acute coronary syndromes (ACS). Unlike remaining oral P2Y12 receptor inhibitors ticagrelor does not require metabolic activation to exert its antiplatelet action. Still, ticagrelor is extensively metabolized by hepatic CYP3A enzymes, and AR-C124910XX is its only active metabolite. A post hoc analysis of patient-level (n = 117) pharmacokinetic data pooled from two prospective studies was performed to identify clinical characteristics affecting the degree of AR-C124910XX formation during the first six hours after 180 mg ticagrelor loading dose in the setting of ACS. Both linear and multiple regression analyses indicated that ACS patients presenting with ST-elevation myocardial infarction or suffering from diabetes mellitus are more likely to have decreased rate of ticagrelor metabolism during the acute phase of ACS. Administration of morphine during ACS was found to negatively influence transformation of ticagrelor into AR-C124910XX when assessed with linear regression analysis, but not with multiple regression analysis. On the other hand, smoking appears to increase the degree of ticagrelor transformation in ACS patients. Mechanisms underlying our findings and their clinical significance warrant further research.Peer reviewedFinal Published versio

    Heralded generation of entangled photon pairs

    Full text link
    Entangled photons are a crucial resource for quantum communication and linear optical quantum computation. Unfortunately, the applicability of many photon-based schemes is limited due to the stochastic character of the photon sources. Therefore, a worldwide effort has focused in overcoming the limitation of probabilistic emission by generating two-photon entangled states conditioned on the detection of auxiliary photons. Here we present the first heralded generation of photon states that are maximally entangled in polarization with linear optics and standard photon detection from spontaneous parametric down-conversion. We utilize the down-conversion state corresponding to the generation of three photon pairs, where the coincident detection of four auxiliary photons unambiguously heralds the successful preparation of the entangled state. This controlled generation of entangled photon states is a significant step towards the applicability of a linear optics quantum network, in particular for entanglement swapping, quantum teleportation, quantum cryptography and scalable approaches towards photonics-based quantum computing

    The Complete Star Formation History of the Universe

    Full text link
    The determination of the star-formation history of the Universe is a key goal of modern cosmology, as it is crucial to our understanding of how structure in the Universe forms and evolves. A picture has built up over recent years, piece-by-piece, by observing young stars in distant galaxies at different times in the past. These studies indicated that the stellar birthrate peaked some 8 billion years ago, and then declined by a factor of around ten to its present value. Here we report on a new study which obtains the complete star formation history by analysing the fossil record of the stellar populations of 96545 nearby galaxies. Broadly, our results support those derived from high-redshift galaxies elsewhere in the Universe. We find, however, that the peak of star formation was more recent - around 5 billion years ago. Our study also shows that the bigger the stellar mass of the galaxy, the earlier the stars were formed. This striking result indicates a very different formation history for high- and low-mass formation.Comment: Accepted by Nature. Press embargo until publishe
    corecore