1,672 research outputs found

    Prevalence of antibody seroconversion to Toxoplasma gondii in uveitis and non-uveitis dogs

    Get PDF
    This is the final version. Available on open access from BMJ Publishing Group via the DOI in this recordData sharing statement: No additional data are available.Objectives To evaluate the prevalence of seroconversion to Toxoplasma gondii in dogs with uveitis and dogs without uveitis. Methods In total, 135 dogs were evaluated: 51 dogs were diagnosed with uveitis, and 84 dogs were without uveitis. Latex agglutination tests were performed on all sera, and the results were evaluated. Results Overall, 7.8 and 6.0 per cent of sera were positive for the presence of anti-T gondii antibodies (dilution ≥1:64) in the groups with uveitis and non-uveitis dogs, respectively. The frequency distribution of variables (positive and negative results in the uveitis and the non-uveitis group of dogs) was tested with Fisher’s exact test. There was no statistically significant difference between groups (P=0.73). Clinical significance These findings suggest that evidence of exposure to T gondii was not significantly different between uveitis and non-uveitis groups of dogs and that the possible association between exposure to T gondii and canine uveitis requires further investigation. This study is the first to report the seroprevalence of anti-T gondii antibodies in dogs in the UK population and the first to report the seroprevalence of anti-T gondii antibodies in dogs with uveitis

    Editorial: The Marine Carbon Cycle: From Ancient Storage to Future Challenges

    Get PDF
    Understanding the oceanic carbon cycle, its dynamics, and its historical and future trajectories is key to our ability to model future climate change. With this in mind, the second Shackleton conference, held in September 2019 at the Geological Society of London (GSL), and organized by the Marine Studies Group of the GSL, focused on oceanic carbon storage, specifically the dynamic processes by which carbon is permanently removed from the atmosphere and/or the terrestrial lithosphere and biosphere and stored in coastal and marine sediments

    Linkage Group Selection: Towards Identifying Genes Controlling Strain Specific Protective Immunity in Malaria

    Get PDF
    Protective immunity against blood infections of malaria is partly specific to the genotype, or strain, of the parasites. The target antigens of Strain Specific Protective Immunity are expected, therefore, to be antigenically and genetically distinct in different lines of parasite. Here we describe the use of a genetic approach, Linkage Group Selection, to locate the target(s) of Strain Specific Protective Immunity in the rodent malaria parasite Plasmodium chabaudi chabaudi. In a previous such analysis using the progeny of a genetic cross between P. c. chabaudi lines AS-pyr1 and CB, a location on P. c. chabaudi chromosome 8 containing the gene for merozoite surface protein-1, a known candidate antigen for Strain Specific Protective Immunity, was strongly selected. P. c. chabaudi apical membrane antigen-1, another candidate for Strain Specific Protective Immunity, could not have been evaluated in this cross as AS-pyr1 and CB are identical within the cell surface domain of this protein. Here we use Linkage Group Selection analysis of Strain Specific Protective Immunity in a cross between P. c. chabaudi lines CB-pyr10 and AJ, in which merozoite surface protein-1 and apical membrane antigen-1 are both genetically distinct. In this analysis strain specific immune selection acted strongly on the region of P. c. chabaudi chromosome 8 encoding merozoite surface protein-1 and, less strongly, on the P. c. chabaudi chromosome 9 region encoding apical membrane antigen-1. The evidence from these two independent studies indicates that Strain Specific Protective Immunity in P. c. chabaudi in mice is mainly determined by a narrow region of the P. c. chabaudi genome containing the gene for the P. c. chabaudi merozoite surface protein-1 protein. Other regions, including that containing the gene for P. c. chabaudi apical membrane antigen-1, may be more weakly associated with Strain Specific Protective Immunity in these parasites

    Improving healthcare delivery with new interactive visualization methods

    Get PDF
    Over the last years, the implementation and evolution of computer resources in hospital institutions has been improving both the financial and temporal efficiency of clinical processes, as well as the security in the transmission and maintenance of their data, also ensuring the reduction of clinical risk. Diagnosis, treatment and prevention of human illness are some of the most information-intensive of all intellectual tasks. Health providers often do not have or cannot find the information they need to respond quickly and appropriately to patient’s medical problems. Failure to review and follow up on patient’s test results in a timely manner, for example, represents a patient’s safety and malpractice concern. Therefore, it was sought to identify problems in a medical exams results management system and possible ways to improve this system in order to reduce both clinical risks and hospital costs. In this sense, a new medical exams visualization platform (AIDA-MCDT) was developed, specifically in the Hospital Center of Porto (CHP), with several new functionalities in order to make this process faster, intuitive and efficient, always guaranteeing the confidentiality and protection of patients’ personal data and significantly improving the usability of the system, leading to a better health care delivery.FCT - Fundação para a Ciência e a Tecnologia (UID/CEC/00319/2019

    The substrate lends a hand

    Get PDF
    Duramycin is a small post-translationally modified peptide with antibody-like affinity for phosphatidylethanolamine. As it turns out, the same functionality that is essential for duramycin activity helps to catalyze the formation of its conformationally constrained and compact polycyclic architecture

    Immunity against sexual stage Plasmodium falciparum and Plasmodium vivax parasites.

    Get PDF
    The efficient spread of malaria from infected humans to mosquitoes is a major challenge for malaria elimination initiatives. Gametocytes are the only Plasmodium life stage infectious to mosquitoes. Here, we summarize evidence for naturally acquired anti-gametocyte immunity and the current state of transmission blocking vaccines (TBV). Although gametocytes are intra-erythrocytic when present in infected humans, developing Plasmodium falciparum gametocytes may express proteins on the surface of red blood cells that elicit immune responses in naturally exposed individuals. This immune response may reduce the burden of circulating gametocytes. For both P. falciparum and Plasmodium vivax, there is a solid evidence that antibodies against antigens present on the gametocyte surface, when co-ingested with gametocytes, can influence transmission to mosquitoes. Transmission reducing immunity, reducing the burden of infection in mosquitoes, is a well-acknowledged but poorly quantified phenomenon that forms the basis for the development of TBV. Transmission enhancing immunity, increasing the likelihood or intensity of transmission to mosquitoes, is more speculative in nature but is convincingly demonstrated for P. vivax. With the increased interest in malaria elimination, TBV and monoclonal antibodies have moved to the center stage of malaria vaccine development. Methodologies to prioritize and evaluate products are urgently needed

    Physics of Neutron Star Crusts

    Get PDF
    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.Comment: 182 pages, published version available at <http://www.livingreviews.org/lrr-2008-10

    Measurement of triple gauge boson couplings from W⁺W⁻ production at LEP energies up to 189 GeV

    Get PDF
    A measurement of triple gauge boson couplings is presented, based on W-pair data recorded by the OPAL detector at LEP during 1998 at a centre-of-mass energy of 189 GeV with an integrated luminosity of 183 pb⁻¹. After combining with our previous measurements at centre-of-mass energies of 161–183 GeV we obtain κ = 0.97_{-0.16}^{+0.20}, g_{1}^{z} = 0.991_{-0.057}^{+0.060} and λ = -0.110_{-0.055}^{+0.058}, where the errors include both statistical and systematic uncertainties and each coupling is determined by setting the other two couplings to their Standard Model values. These results are consistent with the Standard Model expectations

    Consequences of converting graded to action potentials upon neural information coding and energy efficiency

    Get PDF
    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ~50% in generator potentials, to ~3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation
    corecore