342 research outputs found

    Controlled interfacial assembly of 2D curved colloidal crystals and jammed shells

    Full text link
    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional micro-crystalline materials useful in fields as diverse as biomedicine1, materials science2, mineral flotation3 and food processing4. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials employed5-9. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.Comment: 18 pages, 5 figure

    Faecal calprotectin: factors affecting levels and its potential role as a surrogate marker for risk of development of Crohn's Disease.

    Get PDF
    BACKGROUND: Faecal calprotectin (FC) is one of the most widely used non-invasive tests for the diagnosis and assessment of Crohn's disease (CD) activity. Despite this, factors other than disease activity which affect levels have not been extensively reviewed. This is of importance when using FC in the diagnostic setting but also may be of utility in studying the aetiology of disease. OBJECTIVES: Our review outlines environmental risk factors that affect FC levels influencing diagnostic accuracy and how these may be associated with risk of developing CD. FC as a surrogate marker could be used to validate risk factors established in case control studies where prospective studies are not feasible. Proof of this concept is provided by our identification of obesity as being associated with elevated FC, our subsequent confirmation of obesity as risk factor for CD and the subsequent verification in prospective studies, as well as associations of lack of physical activity and dietary fibre intake with elevated FC levels and their subsequent confirmation as risk factors in prospective studies. CONCLUSION: We believe that FC is likely to prove a useful surrogate marker for risk of developing CD. This review has given a theoretical basis for considering the epidemiological determinants of CD which to date has been missing

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Self-Assembled 3D Flower-Like Hierarchical β-Ni(OH)2Hollow Architectures and their In Situ Thermal Conversion to NiO

    Get PDF
    Three-dimensional (3D) flower-like hierarchicalβ-Ni(OH)2hollow architectures were synthesized by a facile hydrothermal route. The as-obtained products were well characterized by XRD, SEM, TEM (HRTEM), SAED, and DSC-TGA. It was shown that the 3D flower-like hierarchicalβ-Ni(OH)2hollow architectures with a diameter of several micrometers are assembled from nanosheets with a thickness of 10–20 nm and a width of 0.5–2.5 μm. A rational mechanism of formation was proposed on the basis of a range of contrasting experiments. 3D flower-like hierarchical NiO hollow architectures with porous structure were obtained after thermal decomposition at appropriate temperatures. UV–Vis spectra reveal that the band gap of the as-synthesized NiO samples was about 3.57 eV, exhibiting obviously red shift compared with the bulk counterpart

    Non-PEGylated liposomes for convection-enhanced delivery of topotecan and gadodiamide in malignant glioma: initial experience

    Get PDF
    Convection-enhanced delivery (CED) of highly stable PEGylated liposomes encapsulating chemotherapeutic drugs has previously been effective against malignant glioma xenografts. We have developed a novel, convectable non-PEGylated liposomal formulation that can be used to encapsulate both the topoisomerase I inhibitor topotecan (topoCED™) and paramagnetic gadodiamide (gadoCED™), providing an ideal basis for real-time monitoring of drug distribution. Tissue retention of topoCED following single CED administration was significantly improved relative to free topotecan. At a dose of 10 μg (0.5 mg/ml), topoCED had a half-life in brain of approximately 1 day and increased the area under the concentration–time curve (AUC) by 28-fold over free topotecan (153.8 vs. 5.5 μg day/g). The combination of topoCED and gadoCED was found to co-convect well in both naïve rat brain and malignant glioma xenografts (correlation coefficients 0.97–0.99). In a U87MG cell assay, the 50% inhibitory concentration (IC50) of topoCED was approximately 0.8 μM at 48 and 72 h; its concentration–time curves were similar to free topotecan and unaffected by gadoCED. In a U87MG intracranial rat xenograft model, a two-dose CED regimen of topoCED co-infused with gadoCED greatly increased median overall survival at dose levels of 0.5 mg/ml (29.5 days) and 1.0 mg/ml (33.0 days) vs. control (20.0 days; P < 0.0001 for both comparisons). TopoCED at higher concentrations (1.6 mg/ml) co-infused with gadoCED showed no evidence of histopathological changes attributable to either agent. The positive results of tissue pharmacokinetics, co-convection, cytotoxicity, efficacy, and lack of toxicity of topoCED in a clinically meaningful dose range, combined with an ideal matched-liposome paramagnetic agent, gadoCED, implicates further clinical applications of this therapy in the treatment of malignant glioma

    Cancer initiation and progression: an unsimplifiable complexity

    Get PDF
    BACKGROUND: Cancer remains one of the most complex diseases affecting humans and, despite the impressive advances that have been made in molecular and cell biology, how cancer cells progress through carcinogenesis and acquire their metastatic ability is still widely debated. CONCLUSION: There is no doubt that human carcinogenesis is a dynamic process that depends on a large number of variables and is regulated at multiple spatial and temporal scales. Viewing cancer as a system that is dynamically complex in time and space will, however, probably reveal more about its underlying behavioural characteristics. It is encouraging that mathematicians, biologists and clinicians continue to contribute together towards a common quantitative understanding of cancer complexity. This way of thinking may further help to clarify concepts, interpret new and old experimental data, indicate alternative experiments and categorize the acquired knowledge on the basis of the similarities and/or shared behaviours of very different tumours

    The role of pro- and anti-inflammatory responses in silica-induced lung fibrosis

    Get PDF
    BACKGROUND: It has been generally well accepted that chronic inflammation is a necessary component of lung fibrosis but this concept has recently been challenged. METHODS: Using biochemical, histological, immunohistochemistry, and cellular analyses, we compared the lung responses (inflammation and fibrosis) to fibrogenic silica particles (2.5 and 25 mg/g lung) in Sprague-Dawley rats and NMRI mice. RESULTS: Rats treated with silica particles developed chronic and progressive inflammation accompanied by an overproduction of TNF-α as well as an intense lung fibrosis. Dexamethasone or pioglitazone limited the amplitude of the lung fibrotic reaction to silica in rats, supporting the paradigm that inflammation drives lung fibrosis. In striking contrast, in mice, silica induced only a limited and transient inflammation without TNF-α overproduction. However, mice developed lung fibrosis of a similar intensity than rats. The fibrotic response in mice was accompanied by a high expression of the anti-inflammatory and fibrotic cytokine IL-10 by silica-activated lung macrophages. In mice, IL-10 was induced only by fibrotic particles and significantly expressed in the lung of silica-sensitive but not silica-resistant strains of mice. Anti-inflammatory treatments did not control lung fibrosis in mice. CONCLUSION: These results indicate that, beside chronic lung inflammation, a pronounced anti-inflammatory reaction may also contribute to the extension of silica-induced lung fibrosis and represents an alternative pathway leading to lung fibrosis

    Templating hydrogels

    Get PDF
    Templating processes for creating polymerized hydrogels are reviewed. The use of contact photonic crystals and of non-contact colloidal crystalline arrays as templates are described and applications to chemical sensing and device fabrication are illustrated. Emulsion templating is illustrated in the formation of microporous membranes, and templating on reverse emulsions and double emulsions is described. Templating in solutions of macromolecules and micelles is discussed and then various applications of hydrogel templating on surfactant liquid crystalline mesophases are illustrated, including a nanoscale analogue of colloidal crystalline array templating, except that the bead array in this case is a cubic array of nonionic micelles. The use of particles as templates in making core-shell and hollow microgel beads is described, as is the use of membrane pores as another illustration of confinement templating

    Excitotoxic cell death induces delayed proliferation of endogenous neuroprogenitor cells in organotypic slice cultures of the rat spinal cord

    Get PDF
    The aim of the present report was to investigate whether, in the mammalian spinal cord, cell death induced by transient excitotoxic stress could trigger activation and proliferation of endogenous neuroprogenitor cells as a potential source of a lesion repair process and the underlying time course. Because it is difficult to address these issues in vivo, we used a validated model of spinal injury based on rat organotypic slice cultures that retain the fundamental tissue cytoarchitecture and replicate the main characteristics of experimental damage to the whole spinal cord. Excitotoxicity evoked by 1 h kainate application produced delayed neuronal death (40%) peaking after 1 day without further losses or destruction of white matter cells for up to 2 weeks. After 10 days, cultures released a significantly larger concentration of endogenous glutamate, suggesting functional network plasticity. Indeed, after 1 week the total number of cells had returned to untreated control level, indicating substantial cell proliferation. Activation of progenitor cells started early as they spread outside the central area, and persisted for 2 weeks. Although expression of the neuronal progenitor phenotype was observed at day 3, peaked at 1 week and tapered off at 2 weeks, very few cells matured to neurons. Astroglia precursors started proliferating later and matured at 2 weeks. These data show insult-related proliferation of endogenous spinal neuroprogenitors over a relatively brief time course, and delineate a narrow temporal window for future experimental attempts to drive neuronal maturation and for identifying the factors regulating this process. \ua9 2013 Macmillan Publishers Limited. All rights reserved

    Wall shear stress as measured in vivo: consequences for the design of the arterial system

    Get PDF
    Based upon theory, wall shear stress (WSS), an important determinant of endothelial function and gene expression, has been assumed to be constant along the arterial tree and the same in a particular artery across species. In vivo measurements of WSS, however, have shown that these assumptions are far from valid. In this survey we will discuss the assessment of WSS in the arterial system in vivo and present the results obtained in large arteries and arterioles. In vivo WSS can be estimated from wall shear rate, as derived from non-invasively recorded velocity profiles, and whole blood viscosity in large arteries and plasma viscosity in arterioles, avoiding theoretical assumptions. In large arteries velocity profiles can be recorded by means of a specially designed ultrasound system and in arterioles via optical techniques using fluorescent flow velocity tracers. It is shown that in humans mean WSS is substantially higher in the carotid artery (1.1–1.3 Pa) than in the brachial (0.4–0.5 Pa) and femoral (0.3–0.5 Pa) arteries. Also in animals mean WSS varies substantially along the arterial tree. Mean WSS in arterioles varies between about 1.0 and 5.0 Pa in the various studies and is dependent on the site of measurement in these vessels. Across species mean WSS in a particular artery decreases linearly with body mass, e.g., in the infra-renal aorta from 8.8 Pa in mice to 0.5 Pa in humans. The observation that mean WSS is far from constant along the arterial tree implies that Murray’s cube law on flow-diameter relations cannot be applied to the whole arterial system. Because blood flow velocity is not constant along the arterial tree either, a square law also does not hold. The exponent in the power law likely varies along the arterial system, probably from 2 in large arteries near the heart to 3 in arterioles. The in vivo findings also imply that in in vitro studies no average shear stress value can be taken to study effects on endothelial cells derived from different vascular areas or from the same artery in different species. The cells have to be studied under the shear stress conditions they are exposed to in real life
    corecore