409 research outputs found

    Hepatic steatosis and insulin resistance are associated with severe fibrosis in patients with chronic hepatitis caused by HBV or HCV infection.

    Get PDF
    BACKGROUND AND AIMS: Steatosis and insulin resistance (IR) are the major disease modifying in patients with chronic hepatitis C (CHC). Only few studies evaluated these features in patients with chronic hepatitis B (CHB). We aimed to assess the prevalence and the factors related to steatosis and IR in CHB patients, compared with CHC subjects, and to evaluate the potential association between these features and fibrosis severity. MATERIAL AND METHODS: One hundred and seventy consecutive patients with CHB (28 HBeAg positive, 142 HBeAg negative), were evaluated using liver biopsy and metabolic measurements and matched for sex, age and body mass index with 170 genotype 1 CHC patients. IR was defined if HOMA-IR>2.7. All biopsies were scored for grading and staging by Scheuer's score, and the steatosis was considered significant if ≥ 10%. RESULTS: The prevalence of significant steatosis was similar in both CHB and CHC patients (31 vs. 38%; P=0.14). IR rate was significantly higher in CHC than in CHB patients (42 vs. 26%; P=0.002). Severe fibrosis (F3-F4), at multivariate analysis, was independently associated with older age (OR 1.050, 95% CI 1.009-1.093), steatosis >10% (OR 4.375, 95% CI 1.749-10.943), and moderate-severe necroinflammatory activity (OR 8.187, 95% CI 2.103-31.875), regardless of HBeAg status, in CHB patients, and with older age (OR 1.080, 95% CI 1.028-1.136), IR (OR 2.640, 95% CI 1.110-6.281), steatosis >10% (OR 3.375, 95% CI 1.394-8.171), and moderate-severe necroinflammatory activity (OR 8.988, 95% CI 1.853-43.593) in CHC patients. CONCLUSIONS: CHB patients had high steatosis prevalence, similar to CHC controls, but lower IR rate. Both steatosis and IR in CHC, and only steatosis in CHB, are independently associated with fibrosis severity

    Nanoscale spin rectifiers controlled by the Stark effect

    Get PDF
    The control of orbital and spin state of single electrons is a key ingredient for quantum information processing, novel detection schemes, and, more generally, is of much relevance for spintronics. Coulomb and spin blockade (SB) in double quantum dots (DQDs) enable advanced single-spin operations that would be available even for room-temperature applications for sufficiently small devices. To date, however, spin operations in DQDs were observed at sub-Kelvin temperatures, a key reason being that scaling a DQD system while retaining an independent field-effect control on the individual dots is very challenging. Here we show that quantum-confined Stark effect allows an independent addressing of two dots only 5 nm apart with no need for aligned nanometer-size local gating. We thus demonstrate a scalable method to fully control a DQD device, regardless of its physical size. In the present implementation we show InAs/InP nanowire (NW) DQDs that display an experimentally detectable SB up to 10 K. We also report and discuss an unexpected re-entrant SB lifting as a function magnetic-field intensity

    Dynamics of a ferromagnetic domain wall and the Barkhausen effect

    Get PDF
    We derive an equation of motion for the the dynamics of a ferromagnetic domain wall driven by an external magnetic field through a disordered medium and we study the associated depinning transition. The long-range dipolar interactions set the upper critical dimension to be dc=3d_c=3, so we suggest that mean-field exponents describe the Barkhausen effect for three-dimensional soft ferromagnetic materials. We analyze the scaling of the Barkhausen jumps as a function of the field driving rate and the intensity of the demagnetizing field, and find results in quantitative agreement with experiments on crystalline and amorphous soft ferromagnetic alloys.Comment: 4 RevTex pages, 3 ps figures embedde

    A Genetic and Metabolic Staging System for Predicting the Outcome of Nonalcoholic Fatty Liver Disease

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is an emerging cause of liver-related events (LREs). Here, we have assessed the ability of a composite score based on clinical features, metabolic comorbidities, and genetic variants to predict LREs. A total of 546 consecutive patients with NAFLD were recruited and stratified according to the fibrosis-4 (FIB-4) index. LREs were defined as occurrence of hepatocellular carcinoma or hepatic decompensation. Cox regression multivariate analysis was used to identify baseline variables associated with LREs. The UK Biobank was used as the validation cohort, and severe liver disease (incidence of cirrhosis, decompensated liver disease, hepatocellular carcinoma, and/or liver transplantation) was used as the outcome. LREs were experienced by 58 patients, only one of whom was in the cohort of patients with a FIB-4 score < 1.3. Multivariate Cox regression analysis of 229 patients with a FIB-4 score ≥ 1.3 highlighted clinical variables independently associated with the development of LREs, including older age, low platelet count, low albumin, low high-density lipoprotein cholesterol, certain genetic factors, and interactions between genetic factors and sex or diabetes. The area under the curve (AUC) for the model was 0.87 at 1, 3, and 5 years. Our novel Genetic and Metabolic Staging (GEMS) scoring system was derived from the Cox model linear predictor, ranked from 0 to 10, and categorized into five classes (0-5, 5-6, 6-7, 7-8, and 8-10). The risk of LREs increased from 4% in patients in the best class (GEMS score 0-5) to 91% in the worst (GEMS score 8-10). GEMS score was associated with incident severe liver disease in the study population (hazard ratio, 1.56; 95% confidence interval, 1.48-1.65; P < 0.001) as well as in the UK Biobank cohort where AUCs for prediction of severe liver disease at 1, 3, and 5 years were 0.70, 0.69, and 0.67, respectively. Conclusion: The novel GEMS scoring system has an adequate ability to predict the outcome of patients with NAFLD

    Dynamics of a ferromagnetic domain wall: avalanches, depinning transition and the Barkhausen effect

    Get PDF
    We study the dynamics of a ferromagnetic domain wall driven by an external magnetic field through a disordered medium. The avalanche-like motion of the domain walls between pinned configurations produces a noise known as the Barkhausen effect. We discuss experimental results on soft ferromagnetic materials, with reference to the domain structure and the sample geometry, and report Barkhausen noise measurements on Fe21_{21}Co64_{64}B15_{15} amorphous alloy. We construct an equation of motion for a flexible domain wall, which displays a depinning transition as the field is increased. The long-range dipolar interactions are shown to set the upper critical dimension to dc=3d_c=3, which implies that mean-field exponents (with possible logarithmic correction) are expected to describe the Barkhausen effect. We introduce a mean-field infinite-range model and show that it is equivalent to a previously introduced single-degree-of-freedom model, known to reproduce several experimental results. We numerically simulate the equation in d=3d=3, confirming the theoretical predictions. We compute the avalanche distributions as a function of the field driving rate and the intensity of the demagnetizing field. The scaling exponents change linearly with the driving rate, while the cutoff of the distribution is determined by the demagnetizing field, in remarkable agreement with experiments.Comment: 17 RevTeX pages, 19 embedded ps figures + 1 extra figure, submitted to Phys. Rev.

    Exome-Wide Association Study on Alanine Aminotransferase Identifies Sequence Variants in the GPAM and APOE Associated With Fatty Liver Disease

    Get PDF
    BACKGROUND & AIMS: Fatty liver disease (FLD) is a growing epidemic that is expected to be the leading cause of end-stage liver disease within the next decade. Both environmental and genetic factors contribute to the susceptibility of FLD. Several genetic variants contributing to FLD have been identified in exome-wide association studies. However, there is still a missing hereditability indicating that other genetic variants are yet to be discovered. METHODS: To find genes involved in FLD, we first examined the association of missense and nonsense variants with alanine amino transferase at an exome-wide level in 425,671 participants from the UK Biobank. We then validated genetic variants with liver fat content in 8930 participants in whom liver fat measurement was available, and replicated 2 genetic variants in 3 independent cohorts comprising 2621 individuals with available liver biopsy. RESULTS: We identified 190 genetic variants independently associated with alanine aminotransferase after correcting for multiple testing with Bonferroni method. The majority of these variants were not previously associated with this trait. Among those associated, there was a striking enrichment of genetic variants influencing lipid metabolism. We identified the variants rs2792751 in GPAM/GPAT1, the gene encoding glycerol-3phosphate acyltransferase, mitochondrial, and rs429358 in APOE, the gene encoding apolipoprotein E, as robustly associated with liver fat content and liver disease after adjusting for multiple testing. Both genes affect lipid metabolism in the liver. CONCLUSIONS: We identified 2 novel genetic variants in GPAM and APOE that are robustly associated with steatosis and liver damage. These findings may help to better elucidate the genetic susceptibility to FLD onset and progression.Peer reviewe

    Modeling NAFLD Disease Burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030

    Get PDF
    Background & Aims: Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are increasingly a cause of cirrhosis and hepatocellular carcinoma globally. This burden is expected to increase as epidemics of obesity, diabetes and metabolic syndrome continue to grow. The goal of this analysis was to use a Markov model to forecast NAFLD disease burden using currently available data. Methods: A model was used to estimate NAFLD and NASH disease progression in eight countries based on data for adult prevalence of obesity and type 2 diabetes mellitus (DM). Published estimates and expert consensus were used to build and validate the model projections. Results: If obesity and DM level off in the future, we project a modest growth in total NAFLD cases (0–30%), between 2016–2030, with the highest growth in China as a result of urbanization and the lowest growth in Japan as a result of a shrinking population. However, at the same time, NASH prevalence will increase 15–56%, while liver mortality and advanced liver disease will more than double as a result of an aging/increasing population. Conclusions: NAFLD and NASH represent a large and growing public health problem and efforts to understand this epidemic and to mitigate the disease burden are needed. If obesity and DM continue to increase at current and historical rates, both NAFLD and NASH prevalence are expected to increase. Since both are reversible, public health campaigns to increase awareness and diagnosis, and to promote diet and exercise can help manage the growth in future disease burden. Lay summary: Non-alcoholic fatty liver disease and non-alcoholic steatohepatitis can lead to advanced liver disease. Both conditions are becoming increasingly prevalent as the epidemics of obesity and diabetes continue to increase. A mathematical model was built to understand how the disease burden associated with non-alcoholic fatty liver disease and non-alcoholic steatohepatitis will change over time. Results suggest increasing cases of advanced liver disease and liver-related mortality in the coming years
    • …
    corecore