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Abstract 

 

Background & Aims: Hepatocellular carcinoma (HCC) risk stratification in individuals with 

dysmetabolism is a major unmet need. Genetic predisposition contributes to non-alcoholic fatty liver 

disease (NAFLD). We aimed to exploit robust polygenic risk scores (PRS) that can be evaluated in 

the clinic to gain insight into the causal relationship between NAFLD and HCC, and to improve HCC 

risk stratification. 

Methods: We examined at-risk individuals (NAFLD cohort, n=2,566; 226 with HCC; and a 

replication cohort of 427 German patients with NAFLD) and the general population (UK Biobank 

[UKBB] cohort, n=364,048; 202 with HCC). Variants in PNPLA3-TM6SF2-GCKR-MBOAT7 were 

combined in a hepatic fat PRS (PRS-HFC), and then adjusted for HSD17B13 (PRS-5).  

Results: In the NAFLD cohort, the adjusted impact of genetic risk variants on HCC was proportional 

to the predisposition to fatty liver (p=0.002) with some heterogeneity in the effect. PRS predicted 

HCC more robustly than single variants (p<10-13). The association between PRS and HCC was mainly 

mediated through severe fibrosis, but was independent of fibrosis in clinically relevant subgroups, and 

was also observed in those without severe fibrosis (p<0.05). In the UKBB cohort, PRS predicted HCC 

independently of classical risk factors and cirrhosis (p<10-7). In the NAFLD cohort, we identified high 

PRS cut-offs (≥0.532/0.495 for PRS-HFC/PRS-5) that in the UKBB cohort detected HCC with ~90% 

specificity but limited sensitivity; PRS predicted HCC both in individuals with (p<10-5) and without 

cirrhosis (p<0.05).  

Conclusions: Our results are consistent with a causal relationship between hepatic fat and HCC. PRS 

improved the accuracy to detect HCC and may help stratify HCC risk in individuals with 

dysmetabolism, including those without severe liver fibrosis. Further studies are needed to validate 

our findings. 

 

Lay summary: By using variations in genes that affect fatty liver, we used two risk scores to help 

predict liver cancer in individuals with obesity-related metabolic complications. These risk scores can 

Jo
urn

al 
Pre-

pro
of



 6

be easily tested in the clinic. We showed that the risk scores helped to identify risk of liver cancer 

both in high-risk individuals and in the general population.  
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Introduction 

Hepatocellular carcinoma (HCC) is now the third cause of cancer-related mortality worldwide.1,2 The 

prevalence of non-alcoholic fatty liver disease (NAFLD; also known as metabolic dysfunction-

associated fatty liver disease when associated with dysmetabolism)3 has increased in parallel with the 

growing burden of obesity and type 2 diabetes (T2D) to become a leading cause of HCC.4-7 About 21-

33% of the general population is affected by NAFLD, and the proportion of subjects progressing to 

severe liver fibrosis and HCC is projected to increase in the near future.8 Current guidelines advise 

that HCC surveillance is recommended in patients with NAFLD and cirrhosis, and should be 

considered in those with advanced liver fibrosis.9 However, no reliable biomarker is yet available to 

stratify HCC risk in patients without severe fibrosis, accounting for a large fraction of HCC cases in 

individuals with dysmetabolism.9,10 The high prevalence of NAFLD and the evidence that HCC 

frequently arises in individuals unaware of their risk make classical HCC surveillance strategies 

impractical, resulting in delayed diagnosis and unfavourable prognosis.11 Thus, non-invasive 

biomarkers to identify patients at risk of NAFLD-related HCC onset are urgently needed. 

Hepatic fat content has a strong inherited component.12 Variants in genes involved in the 

regulation of hepatic lipid metabolism, such as in patatin-like phospholipase domain-containing 

protein 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), membrane bound O-

acyltransferase domain containing 7 (MBOAT7) and glucokinase regulator (GCKR), predispose to 

NAFLD, hepatic fibrosis, and HCC in the presence of environmental triggers.12-16 Conversely, a splice 

variant in 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) prevents severe fibrosis and HCC 

development.17 We previously developed a robust polygenic risk score (PRS) of hepatic fat content 

(termed PRS-HFC) and showed that the impact of genetic risk variants on fibrosis is proportional to 

that on hepatic fat, consistent with hepatic fat accumulation being a driver of liver disease.18 Recently, 

Stender et al. confirmed that an unweighted PRS based on PNPLA3-TM6SF2-HSD17B13 predicted 

cirrhosis and HCC in Europeans.19  
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Here we hypothesized that liver fat promotes HCC in individuals with NAFLD and 

dysmetabolism. Mendelian randomization is considered the most appropriate epidemiological tool to 

assess causality when randomized controlled trials are not feasible. Therefore, we examined the 

impact of the previously developed PRS-HFC based on well-characterized risk variants that can be 

evaluated in the clinic on HCC in at-risk individuals and in the general population. We also performed 

a further adjustment for HSD17B13 (termed PRS-5). Next, we identified PRS thresholds able to 

identify with good specificity a subset of individuals with NAFLD and dysmetabolism at high risk for 

HCC. Finally, we showed that PRS predicted HCC irrespective of severe liver fibrosis.  
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Patients and methods 

 

Study cohorts 

The NAFLD case-control cross-sectional cohort included 1,699 unrelated subjects with NAFLD of 

European ancestry, who were evaluated from 2008 until 2019 at Italian and UK centres for suspected 

liver disease (from simple steatosis to severe fibrosis and HCC), or who underwent liver biopsy 

during bariatric surgery. Liver damage was assessed by histology, except when clear clinical or 

radiological signs of cirrhosis were detected (n=342, 20.1%). Part of this cohort has previously been 

described.14,15,20,21 NAFLD,3 severe fibrosis,22 HCC,23 and selection of 865 controls24,25 were defined 

as reported in Supplementary Methods. We also considered an independent NAFLD validation cohort 

of 427 German individuals. The demographic and clinical data of these individuals are shown in 

Table S1. 

 The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki, 

approved by the Fondazione IRCCS Ca’ Granda, and ratified by the participating centres. Informed 

written consent was obtained from each participant. 

 The UK Biobank (UKBB) has data (including baseline assessment, physical measures, 

biological samples, and genetic data) from >500,000 individuals recruited between 2006 and 2010 and 

aged 40-69 years26 (ukbiobank.ac.uk). During follow-up, information about health-related outcomes 

have been collected from national datasets. Data used in this study were obtained from the UKBB 

under Application Number 37142. Selection criteria and HCC and diabetes definitions are reported in 

Supplementary Methods.27 Subsequently, individuals with concomitant viral hepatitis (ICD-10 code 

B15-B19) were excluded (n=535, 0.15%) for a sensitivity analysis presented in Supplementary 

Results. This left us with 364,048 individuals. Clinical features are shown in Table S1 and Table S2. 

 

Jo
urn

al 
Pre-

pro
of



 10

Genotyping 

Study participants were genotyped for rs738409 (PNPLA3 I148M variant), rs58542926 (TM6SF2 

E167K), rs641738 C>T MBOAT7, rs1260326 (GCKR P446L) and rs72613567 (HSD17B13:TA),12 as 

specified in Supplementary Methods.  

 

Statistical analysis 

For descriptive statistics, categorical variables are shown as number and proportion. Continuous 

variables are shown as mean and standard deviation (SD) or median and interquartile range (IQR), as 

appropriate.  

Observational associations were performed by fitting data to generalized linear models. 

Logistic regression models were fit to examine binary traits, and the association between PRS and 

liver disease was adjusted for age, sex, body mass index (BMI) and T2D, with or without further 

adjustment for the presence of severe fibrosis stage (F3-F4).  

To estimate the causal relationship between genetically determined predisposition to 

accumulate liver fat and HCC, we used the most established risk variants for hepatic fat content as 

instruments in a Mendelian randomization analysis, as reported in Supplementary Methods.12,18,28 We 

used the PRS-HFC, a robust genetic instrument calculated by summing the number of the steatosis-

predisposing alleles in PNPLA3-TM6SF2-MBOAT7-GCKR weighted by their effect size on hepatic fat 

content, quantified by the reference standard in the general population.18 We next developed a 

modified NAFLD score adjusted for the rs72613567 HSD17B13 variant17 (PRS-5: available in 2,532, 

98.7%, coefficient: -0.361). We reported the association of both instruments with phenotypes 

throughout the study, as PRS-HFC is a proxy for genetic predisposition to accumulate liver fat, while 

PRS-5 considers all variants robustly associated with NAFLD at the time of study planning.12  

The causal effect of genetic predisposition to NAFLD on HCC was estimated by instrumental 

variable regression analysis (using the AER package in R), with NAFLD as an explanatory variable, 
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and HCC as the outcome.29 To further account for the possible pleiotropy of the genetic variants 

considered, we also considered, in sensitivity analyses, robust Mendelian randomization approaches 

by the MendelianRandomization R package.30  

The main goal was to determine the thresholds in the PRS able to identify individuals at 

higher genetic risk of HCC. Diagnostic accuracy of PRS was evaluated by receiver operating 

characteristic (ROC) curves, and the best cut-off identified as the point with maximum 

(sensitivity+specificity-1). 

Statistical analysis was carried out using the JMP Pro 14.0 Statistical Analysis Software (SAS 

Institute, Cary, NC), and R statistical analysis software version 3.5.2 (http://www.R-project.org/). P 

values <0.05 (two tailed) were considered significant. 
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Results 

 

Causal relationship between hepatic fat and HCC in the NAFLD cohort 

We first examined the relationship between the impact of genetic risk variants on NAFLD, severe 

liver fibrosis and HCC (Fig. 1). The increase in the risk of HCC conferred by risk variants was 

proportional to the increase in the risk of NAFLD (p=0.02). There was a direct relationship between 

the risk conferred to FLD and severe fibrosis (p=0.0001), and between severe fibrosis and HCC 

(p=0.002).  

Instrumental variable regression adjusted for age, sex, BMI and T2D showed that NAFLD 

was causally associated with HCC (beta +0.30±0.06, odds ratio (OR) 1.35, 1.18-1.58, p=1*10-5 for 

PRS-HFC; beta +0.29±0.07, OR 1.27, 1.10-1.45, p=1*10-5 for PRS-5). The association coefficient 

was attenuated by 37-41%, but remained statistically significant, after further correction for severe 

liver fibrosis (p<0.05). Formal mediation analysis is reported in Supplementary Results.  

Estimation of causality by a range of modern Mendelian randomization approaches, taking 

into account the possible pleiotropic effects of the genetic instruments (e.g. a direct impact on HCC 

not mediated by NAFLD), and other sensitivity analyses were generally consistent with a causal effect 

of NAFLD on HCC, and are reported in Supplementary Results, Fig. S1 and Table S3. 

 

PRS-HFC and PRS-5 predict the full spectrum of NAFLD  

The impact of PRS on the full spectrum of liver disease in the NAFLD cohort is reported in Fig. 2 and 

Table 1 (upper panel). PRS were associated with a ~12-fold increased OR of severe fibrosis (p<10-27 

for both) and a ~9-fold increased OR of HCC (OR=9.2, 5.2-16.3, p=2.7*10-14 for PRS-HFC; and 

OR=9.1, 5.2-16.0, p=1.6*10-14 for PRS-5). The association was independent of age, sex, BMI and 

T2D (p<0.01 for both), but not of severe fibrosis (p>0.1). In the NAFLD cohort, there was no 
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significant interaction between PRS and BMI, T2D or HOMA-IR in determining HCC risk (p>0.1). 

Similar results were obtained in the German NAFLD cohort (see Supplementary Results). 

Similarly, PRS were associated with cirrhosis and HCC in the UKBB cohort, both in the 

overall cohort and in individuals without chronic viral hepatitis (Table 1, bottom panel). In this latter 

group, PRS were associated with >15-fold increased OR of HCC (OR=15.3, 8.1-28.7, p=2.6*10-17 for 

PRS-HFC; and OR=15.9, 8.6-29.1, p=4.4*10-19 for PRS-5). The association between PRS and HCC 

remained significant after adjustment for cirrhosis and was more robust in individuals without chronic 

viral hepatitis (OR 6.6, 3.4-12.7, p=1.7*10-8 for PRS-HFC; and OR=6.9, 3.6-13.1, p=4.7*10-9 for 

PRS-5). These data are consistent with a causative effect of genetic predisposition to hepatic fat 

accumulation on carcinogenesis, which is partially mediated by severe fibrosis. 

 

Diagnostic accuracy of PRS for HCC and identification of thresholds associated with high 

genetic risk 

In the NAFLD cohort, the area under the ROC curve (AUROC) for HCC was 0.64 for PRS-HFC and 

0.65 for PRS-5 (Table 2). A value of ≥0.532 was identified as the best single cut-off for PRS-HFC, 

with 43% sensitivity and 80% specificity. For PRS-5, the corresponding cut-off (43% sensitivity and 

79% specificity) was ≥0.495 (Table 2 and Fig. 3). Hereinafter, we define PRS-HFC ≥0.532 and PRS-

5 ≥0.495 as ‘positive’ tests. In the UKBB cohort, both PRS had the same AUROC (0.63), and high 

scores had a lower sensitivity but higher specificity than in the NAFLD cohort (27% and 90% 

respectively) (Table 3). 

Both PRS were able to predict HCC more robustly than single variants, with PRS-5 

conferring a slight improvement over PRS-HFC (Table S4). Positive PRS tests were associated with 

an ~3-fold increased HCC risk both in the NAFLD (p<10-12) and the UKBB (p≤10-13) cohorts, 

reaching almost a 4-fold increased risk (p<10-14) for non-viral HCC (Table 2 and Table 3); in the 

UKBB cohort, the association was independent of cirrhosis (p<10-5 in the overall cohort and p<10-7 in 

non-viral cohort; Table S4). 
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In the NAFLD cohort, the prevalence of positive tests was 22.2% for PRS-HFC and 22.9% 

for PRS-5. Positive PRS were associated with a three-fold higher risk of HCC (Table 2; p<10-12 for 

both). We next tested whether the association of HCC positive tests was independent of severe 

fibrosis. PRS tests predicted HCC also in patients without severe fibrosis (OR>2.0, 1.1-3.8, p=3.3*10-

2 for PRS-HFC; and OR=2.3, 1.2-4.5, p=1.2*10-2 for PRS-5; Table S5), and improved HCC detection 

in individuals aged over 40 years independently of severe fibrosis (OR=1.5, 1.1-2.2, p=1.0*10-2 for 

PRS-HFC; and OR=1.5, 1.1-2.1, p=2.4*10-2 for PRS-5). Additional sensitivity analyses and validation 

in the German cohort are presented in Table S5 and Supplementary Results. 

 In the UKBB cohort (see Table 3, Table S6 and Table S7), the prevalence of positive tests 

was 11.1% for PRS-HFC and 10.8% for PRS-5. Positive PRS tests had a 27% sensitivity and 90% 

specificity and were associated with a ~2-fold higher OR of HCC in individuals without cirrhosis 

(p<0.05) and with a ~3-fold higher OR in those with cirrhosis (p<10-5). Importantly, they showed 

higher performance in individuals with obesity/T2D (OR 5.2/4.4, respectively; Table 3). The 

diagnostic accuracy of positive PRS tests in other clinically relevant subgroups is reported in 

Supplementary Results, but it was higher in individuals with obesity and/or T2D (~40% sensitivity 

and 90% specificity). This observation is consistent with the presence of a significant interaction 

between PRS and BMI, probably mediated by FLD in determining HCC in individuals without 

chronic viral hepatitis (p=0.02 and p=0.012 for PRS-HFC and PRS-5, respectively). 
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Discussion 

In this study, we used genetic instruments to a) examine whether weighted PRS, reflecting the genetic 

predisposition to accumulate liver fat and develop NAFLD, predict HCC development in at-risk 

individuals and in the general population, and b) evaluate the causal relationship between NAFLD and 

HCC. Next, we determined the diagnostic accuracy of PRS thresholds to indicate increased genetic 

risk of HCC. Despite limitations related to the potential heterogeneity of the metabolic and 

carcinogenic effects of the genetic variants, results were generally consistent with the presence of a 

causal link between hepatic fat accumulation and HCC. Upon confirmation by further studies, this 

relationship would suggest that approaches/drugs aiming to reduce liver fat may contribute to prevent 

HCC.4-7,31 As we exploited simple yet very robust PRS based on a limited number of validated risk 

variants that can be used irrespective of the presence of liver disease in subjects with dysmetabolism, 

these data may provide a new instrument that, upon refinement and further testing, may guide a cost-

effective surveillance for HCC.  

We focused our analyses on individuals with dysmetabolism and specifically in those with 

NAFLD or metabolic risk factors but no severe liver fibrosis. This is because a) they represent a large 

fraction of the general population and b) there is no accurate biomarker to predict HCC in these 

individuals. We did not exclude those with moderate alcohol intake in the general population due to 

the difficulties in the assessment of average alcohol intake and of synergic effect of alcohol with 

dysmetabolism in the pathogenesis of FLD. In individuals with dysmetabolism, who are mostly 

unaware that they have liver disease, HCC surveillance is not currently performed due to the lack of 

cost-effective approaches. Therefore, we identified PRS thresholds, which showed a high specificity 

for HCC, allowing the identification of a subset of individuals who may benefit from further 

refinement of HCC risk stratification by the combined used of other biomarkers and imaging 

approaches. Furthermore, these individuals at high genetic risk may benefit from lifestyle and 

pharmacological approaches to halt liver disease progression. 
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The first main study finding was that genetic predisposition to liver fat accumulation results in 

an increased HCC risk, consistently with causation, both in at-risk individuals with NAFLD and in the 

general population, where the effect of PRS on HCC risk was larger in those with dysmetabolism. An 

association consistent with a causal relationship between genetic predisposition to hepatic fat and 

HCC was also confirmed in the NAFLD cohort by modern robust Mendelian randomization 

approaches that take into account the heterogeneity of the effects of the genetic instruments, e.g. the 

possibility that they promote liver cancer independently of the impact on liver fat.30 The only 

exception to the direct correlation between the risk of NAFLD and that of HCC was related to GCKR 

variation, which decreases T2D risk, and may therefore have led to an underestimation of the causal 

relationship between hepatic fat and HCC.12 Secondly, we showed that the association between 

genetic predisposition to hepatic fat accumulation and HCC was partly, but not completely, mediated 

by the promotion of severe fibrosis. This result is consistent with the clinical observation that HCC 

occurs in individuals without severe liver fibrosis and suggests that liver fat accumulation favours 

directly hepatic carcinogenesis. The significant interaction between PRS and adiposity on HCC risk at 

population level is also consistent with a causal association of NAFLD with HCC.30 However, the 

present analysis was not able to discriminate whether quantitative or qualitative changes in liver fat 

content or lipotoxicity predispose to HCC. 

Despite the robust statistical association, and the fact that PRS predicted HCC more 

accurately than single variants reported in clinical guidelines,32 as expected PRS alone had a moderate 

accuracy to predict HCC (AUROC 0.65 in the NAFLD cohort, 0.70 in individuals with T2D in the 

UKBB cohort). However, PRS are easily determined by a simple, once-in-a-lifetime blood test, are 

independent of fluctuations of environmental triggers, and predict the future development of cirrhosis, 

which frequently precedes HCC. Therefore, we reasoned that if we could find a threshold to identify 

HCC with a high predictive value, this may be the first step towards a cost-effective HCC surveillance 

to a subset of individuals with inborn and acquired risk for this disease. We therefore selected the best 

PRS thresholds (i.e. ≥0.532/0.495 for PRS-HFC/PRS-5) to predict HCC in the NAFLD cohort. 

Positive tests were associated with a >3-fold higher adjusted OR of HCC, as confirmed in an 
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independent German NAFLD cohort and in the UKBB cohort. In particular, positive PRS tests 

conferred a >5-fold higher risk in obese individuals from the general population. In the UKBB cohort, 

~11% of individuals had high PRS, which despite limited sensitivity had a good specificity for 

detection of non-viral HCC (~90%). In individuals with dysmetabolism from the general population, a 

clinically relevant setting where the prevalence of HCC was relatively low, PRS reached a higher 

accuracy to detect HCC (OR>4.4). The improved sensitivity (~40%, positive likelihood ratio ~3.7-

3.9) is consistent with the synergic effect between obesity and genetic predisposition in determining 

NAFLD.33  

PRS predicted HCC independently of the presence of severe fibrosis in the NAFLD cohort 

and of cirrhosis in the UKBB cohort, especially in younger patients and in those with T2D. Therefore, 

more accurate evaluation of liver damage and possibly HCC surveillance may be recommended to 

individuals with dysmetabolism older than 40 years. Although the selection of a subset at risk due to 

the high PRS will not detect a large fraction of HCC cases in individuals without clinical evidence of 

cirrhosis, it would still represent a step forward compared to the current absence of any surveillance in 

this group. Alternatively, PRS could be integrated with classical risk factors and other biomarkers for 

repeated evaluations of HCC risk in individuals with dysmetabolism, but the relative cost-

effectiveness of these strategies remains to be determined. 

Previous studies from our group evaluated the role of PRS to predict HCC.15,16,18 Recently, 

Gellert-Kristensen et al. tested an unweighted PRS that confirmed a robust association with the risk of 

HCC in both the Danish general population and in UKBB, based on a smaller number of cases than in 

the present study.19 Our study is novel in several aspects. First, we focused on HCC risk and weighted 

the impact of a larger panel of variants on FLD, likely providing a more accurate estimate and being 

able to make inferences on the causal relationship on HCC. Second, we tested the impact of PRS in 

individuals at high risk of liver disease, stratifying the analyses by liver fibrosis severity. Third, we 

tested the diagnostic accuracy of PRS in clinically relevant subgroup of individuals from the general 

population, in particular in those without cirrhosis and with obesity.  
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Limitations of the present study include the cross-sectional design of the NAFLD cohort, 

although it included a larger number of HCC cases than previous studies. Individuals without severe 

fibrosis and controls were younger than those with more advanced disease or HCC, which limited the 

power to detect and underestimated the impact of genetic factors, as it cannot be ruled out that some 

participants with positive PRS will progress to advanced liver disease and HCC. Prospective studies 

will therefore be necessary to more accurately assess the magnitude of the increase in HCC risk 

conferred by PRS. Importantly, we recently showed that high PRS-HFC predicted HCC incidence in a 

prospective cohort of patients with cirrhosis in whom HCV had been eradicated by antiviral drugs; the 

association was independent of classical risk factors including fibrosis severity, improving risk 

stratification.34 Notably, the best PRS-HFC threshold to discriminate higher HCC risk was 

superimposable to that identified in the present study in the NAFLD cohort. Lastly, other inherited 

genetic determinants of the risk of liver damage in the general population may modify HCC risk (e.g. 

HFE and SERPINA1 mutations for Europeans),35 so that their inclusion in updated PRS may further 

improve their accuracy, and results may not apply entirely to non-European populations. 

 In conclusion, and with the limitations highlighted in the discussion, the results of the present 

study are consistent with a causal role of hepatic fat accumulation in hepatic carcinogenesis. PRS may 

be useful to non-invasively predict the risk of HCC in individuals with NAFLD and dysmetabolism, 

independently of severe liver fibrosis, and positive PRS identify a subset of individuals with 

dysmetabolism at high genetic risk of HCC. Large studies integrating genetic and other biomarkers 

are necessary to further improve the risk stratification and facilitate the clinical implementation of 

these findings. 
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Abbreviations: BMI: body mass index, FLD: fatty liver disease, GCKR: glucokinase regulator, HCC: 

hepatocellular carcinoma, HFC: hepatic fat content, HSD17B13: 17β-hydroxysteroid dehydrogenase 

type 13, MAFLD: metabolic associated fatty liver disease, MBOAT7: membrane bound O-

acyltransferase domain containing 7, NAFLD: nonalcoholic fatty liver disease, PC: principal 

component, PNPLA3: patatin-like phospholipase domain-containing protein 3, PRS: polygenic risk 

score; TM6SF2: transmembrane 6 superfamily member 2, T2D: type 2 diabetes, UKBB: UK Biobank. 
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Tables 

 

Table 1. PRS-HFC and PRS-5 are independent predictors of liver disease in the NAFLD and in the 

UKBB cohorts.  

 

 

 

 Univariate analysis Model 1 * Model 2 ** 

 p value OR 95% c.i. p value OR 95% c.i. p value OR 95% c.i. 

NAFLD cohort 

PRS- HFC          

FLD 4.4*10-26 8.4 5.7-12.5 9.2*10-21 10.1 6.2-16.5 - - - 

Fibrosis F3-

F4 

9.5*10-28 11.4 7.4-17.7 7.0*10-13 7.5 4.3-13.0 - - - 

HCC 2.7*10-14 9.2 5.2-16.3 3.6*10-3 3.0 1.4-6.4 1.5*10-1 1.8 0.8-3.9 

PRS-5          

FLD 6.0*10-27 9.0 6.0-13.4 1.5*10-21 10.7 6.6-17.3 - - - 

Fibrosis F3-

F4 

1.1*10-30 12.6 8.2-19.3 1.0*10-15 9.4 5.4-16.2 - - - 

HCC 1.6*10-14 9.1 5.2-16.0 1.7*10-3 3.3 1.6-6.9 1.3*10-1 1.8 0.8-4.1 

          

UKBB cohort 

PRS-HFC          

Cirrhosis 7.3*10-32 4.1 3.2-5.1 6.4*10-33 4.2 3.3-5.3 - - - 

HCC 4.8*10-15 11.1 6.1-20.4 5.0*10-15 11.1 6.1-20.2 1.5*10-6 4.6 2.5-8.6 

PRS-5          

Cirrhosis 1.4*10-36 4.4 3.5-5.6 3.3*10-37 4.5 3.6-5.7 - -  

HCC 8.6*10-17 11.9 6.6-21.3 1.2*10-16 11.7 6.54-21 5.9*10-7 4.8 2.6-8.9 
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* At logistic regression adjusted for age, sex, BMI, T2D, and further adjusted for ethnicity (PC1:10), 

array batch, assessment centre in the UKBB cohort.  

** Further adjusted for the presence of severe fibrosis (stage F3-F4) in the NAFLD cohort or 

diagnosis of cirrhosis in the UKBB cohort. 

Abbreviations: OR: odds ratio, 95% c.i.: 95% confidence interval, NAFLD: non-alcoholic fatty liver 

disease, HCC: hepatocellular carcinoma, BMI: body mass index, T2D: type 2 diabetes, PRS-HFC: 

polygenic risk score of hepatic fat content considering variants in PNPLA3-TM6SF2-MBOAT7-

GCKR; PRS-5: polygenic risk score considering 5 risk variants (further adjusted for HSD17B13 

variation).
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Table 2. Diagnostic accuracy of PRS-HFC (n=2,564) and PRS-5 (n=2,245) for HCC in the NAFLD 

cohort. 

 PRS-HFC PRS-5  

AUROC 0.64 0.65 

Diagnostic threshold 0.532 0.495 

Prevalence (%)  569 (22.2) 580 (22.9) 

OR (95% c.i.) 3.0 (2.2-3.9) 2.9 (2.1-3.8) 

p value* 3.7*10-14 8.1*10-13 

Sensitivity (95% c.i.) 0.43 (0.37-0.49) 0.43 (0.37-0.50) 

Specificity (95% c.i.) 0.80 (0.78-0.81) 0.79 (0.77-0.81) 

PPV (95% c.i.) 0.17 (0.14-0.20) 0.16 (0.13-0.19) 

NPV (95% c.i.) 0.93 (0.92-0.94) 0.94 (0.93-0.95) 

LR+ (95% c.i.) 2.13 (1.79-2.52) 2.06 (1.74-2.54) 

LR- (95% c.i.) 0.71 (0.64-0.80) 0.72 (0.64-0.81) 

 

*At logistic regression analysis. Abbreviations: AUROC: area under the receiver operating 

characteristic curve; OR: odds ratio, 95% c.i.: 95% confidence interval; PPV: positive predictive 

value; NPV: negative predictive value; LR+: positive likelihood ratio; LR-: negative likelihood ratio; 

PRS-HFC: polygenic risk score of hepatic fat content considering variants in PNPLA3-TM6SF2-

MBOAT7-GCKR; PRS-5: polygenic risk score considering 5 risk variants (further adjusted for 

HSD17B13 variation); HCC: hepatocellular carcinoma. 
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Table 3. Diagnostic accuracy of PRS-HFC ≥0.532 and PRS-5 ≥0.495 for HCC in the UKBB cohort 

(overall, in non-cirrhotic individuals and in participants stratified by the presence of obesity or T2D.)  

 Overall No cirrhosis BMI ≥ 30 T2D 

UKBB cohort     

Cases N 198 95 88 81 

PRS-HFC median (IQR) cases 0.337 (0.128-0.595) 0.266 (0.128-0.394) 0.4 (0.192-0.604) 0.394 (0.240-0.603) 

Controls N 358,126 356,725 86,116 25,051 

PRS-HFC median (IQR) controls 0.193 (0.126-0.394) 0.193 (0.126-0.394) 0.193 (0.126-0.394) 0.193 (0.126-0.394) 

AUROC (PRS-HFC) 0.63 0.55 0.69 0.70 

Positive PRS prevalence (%) 35,734 (11.1) 35,458 (11.0) 8,497 (10.9) 2,741 (12.2) 

OR (95% c.i.) 3.3 (2.4-4.5) 1.8 (1.1-3.1) 5.2 (3.4-8.1) 4.4 (2.7-6.9) 

p value* 1.0*10-13 2.7*10-2  8.3*10-14 3.6*10-10 

Sensitivity, % 27% 17% 36% 35% 

Specificity, % 90% 90% 90% 89% 

PPV 0.01 0.01 0.01 0.01 

NPV 1.00 1.00 1.00 1.00 

LR+ 2.69 1.70 3.70 3.19 

LR- 0.81 0.92 0.71 0.73 

Cases N 197 95 87 80 

PRS-5 median (IQR) cases 0.292 (0.126-0.524) 0.193 (0.063-0.394) 0.394 (0.161-0.597) 0.394 (0.193-0.587) 

Controls N 356,746 355,355 85,803 24,959 

PRS-5 median (IQR) controls 0.174 (0.063-0.337) 0.174 (0.063-0.337) 0.167 (0.063-0.337) 0.191 (0.063-0.337) 

AUROC (PRS-5) 0.63 0.54 0.69 0.71 

Positive PRS prevalence (%) 34,673 (10.8) 34,405 (10.7) 8,217 (10.6) 2,644 (11.8) 

OR (95% c.i.) 3.4 (2.5-4.7) 1.9 (1.1-3.2) 5.5 (3.6-8.5) 4.6 (2.9-7.3) 

p value* 1.9*10-14 2.0*10-2 1.7*10-14 8.9*10-11 

Sensitivity, % 27% 17% 37% 35% 

Specificity, % 90% 90% 90% 90% 

PPV 0.01 0.01 0.01 0.01 

NPV 1.00 1.00 1.00 1.00 

LR+ 2.77 1.74 3.86 3.34 

LR- 0.81 0.92 0.70 0.73 

 

*At logistic regression analysis. Polygenic risk scores values are reported as median (IQR). 

Abbreviations: N: number, OR: odds ratio; 95% c.i.: 95% confidence interval; AUROC: area under 

the receiving operator characteristic curve; PPV: positive predictive value; NPV: negative predictive 
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value; LR+: positive likelihood ratio; LR-: negative likelihood ratio; PRS-HFC: polygenic risk score 

of hepatic fat content considering variants in PNPLA3-TM6SF2-MBOAT7-GCKR; PRS-5: polygenic 

risk score considering 5 risk variants (further adjusted for HSD17B13 variation), BMI: body mass 

index, T2D: type 2 diabetes. 
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Figure legends 

 

Fig. 1. Correlation between the impact of genetic risk variants in PNPLA3, TM6SF2, MBOAT7, 

GCKR, and HSD17B13 on the risk of fatty liver disease (FLD), severe fibrosis and HCC in the 

NAFLD cohort. Correlations coefficients and 95% confidence intervals at generalized linear 

regression models are reported. (A) Correlation between the impact on the risk of FLD and severe 

fibrosis; (B) correlation between the impact on the risk of FLD and HCC; (C) correlation between the 

impact on the risk of severe fibrosis and HCC. p values were determined at generalized linear 

regression analysis. 

 

Fig. 2. Impact of the PRS-HFC and the PRS-5 on the full spectrum of fatty liver disease (FLD) 

in the NAFLD cohort, as evaluated by logistic regression analysis. 

 

Fig. 3. Comparison of the diagnostic accuracy of the PRS-HFC and the PRS-5 for HCC in the 

NAFLD cohort. The AUROC of the two PRS to predict HCC and the optimal diagnostic thresholds 

are shown. 

 

Fig. 4. Association of PRS-HFC ≥0.532 and PRS-5 ≥0.495 with HCC in individuals included in 

the NAFLD cohort at logistic regression analysis stratified by the presence of the main risk 

factors (fibrosis severity, age, BMI: body mass index, T2D: type 2 diabetes). 
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Figure 4
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HIGHLIGHTS 

• Genetic predisposition to liver fat accumulation predisposes to cirrhosis and HCC. 

• Hepatic fat promotes carcinogenesis, partly via fibrosis. 

• Polygenic risk scores may improve HCC risk stratification during dysmetabolism. 
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