1,305 research outputs found
Seasonal distribution of Gobiids in waters adjacent to estuarine marsh-edge habitats: sssessing the effects of habitat alteration
Polar observations of transverse magnetic pulsations initiated at substorm onset in the high-latitude plasma sheet
The Growth of Black Holes and Bulges at the Cores of Cooling Flows
Central cluster galaxies (cDs) in cooling flows are growing rapidly through
gas accretion and star formation. At the same time, AGN outbursts fueled by
accretion onto supermassive black holes are generating X-ray cavity systems and
driving outflows that exceed those in powerful quasars. We show that the
resulting bulge and black hole growth follows a trend that is roughly
consistent with the slope of the local (Magorrian) relation between bulge and
black hole mass for nearby quiescent ellipticals. However, a large scatter
suggests that cD bulges and black holes do not always grow in lock-step. New
measurements made with XMM, Chandra, and FUSE of the condensation rates in
cooling flows are now approaching or are comparable to the star formation
rates, alleviating the need for an invisible sink of cold matter. We show that
the remaining radiation losses can be offset by AGN outbursts in more than half
of the systems in our sample, indicating that the level of cooling and star
formation is regulated by AGN feedback.Comment: 3 pages, 4 figures, to appear in the proceedings of "Heating vs.
Cooling in Galaxies and Clusters of Galaxies," edited by H. Boehringer, P.
Schuecker, G. W. Pratt, and A. Finogueno
The temperature structure in the core of Sersic 159-03
We present results from a new 120 ks XMM-Newton observation of the cluster of
galaxies Sersic 159-03. In this paper we focus on the high-resolution X-ray
spectra obtained with the Reflection Grating Spectrometer (RGS). The spectra
allow us to constrain the temperature structure in the core of the cluster and
determine the emission measure distribution as a function of temperature. We
also fit the line widths of mainly oxygen and iron lines.Comment: 7 pages and 4 figures. Contribution to the proceedings of the COSPAR
Scientific Assembly, session E1.2 "Clusters of Galaxies: New Insights from
XMM-Newton, Chandra and INTEGRAL", july 2004, Paris (France). Accepted for
publication in Advances in Space Researc
Tracing Ghost Cavities with Low Frequency Radio Observations
We present X-ray and multi-frequency radio observations of the central radio
sources in several X-ray cavity systems. We show that targeted radio
observations are key to determining if the lobes are being actively fed by the
central AGN. Low frequency observations provide a unique way to study both the
lifecycle of the central radio source as well as its energy input into the ICM
over several outburst episodes.Comment: 6 pages, 4 figures, To appear in the Proceedings of "Heating vs.
Cooling in Galaxies and Clusters of Galaxies", eds. H. Boehringer, P.
Schuecker, G. W. Pratt & A. Finoguenov (ESO Astrophysics Symposia,
Springer-Verlag), Garching (Germany), August 200
Enhanced Fusion-Evaporation Cross Sections in Neutron-Rich Sn on Ni
Evaporation residue cross sections have been measured with neutron-rich
radioactive Sn beams on Ni in the vicinity of the Coulomb
barrier. The average beam intensity was particles per second
and the smallest cross section measured was less than 5 mb. Large subbarrier
fusion enhancement was observed. Coupled-channels calculations taking into
account inelastic excitation and neutron transfer underpredict the measured
cross sections below the barrier.Comment: 4 pages including 1 table and 3 figure
The Two Dimensional Kondo Model with Rashba Spin-Orbit Coupling
We investigate the effect that Rashba spin-orbit coupling has on the low
energy behaviour of a two dimensional magnetic impurity system. It is shown
that the Kondo effect, the screening of the magnetic impurity at temperatures T
< T_K, is robust against such spin-orbit coupling, despite the fact that the
spin of the conduction electrons is no longer a conserved quantity. A proposal
is made for how the spin-orbit coupling may change the value of the Kondo
temperature T_K in such systems and the prospects of measuring this change are
discussed. We conclude that many of the assumptions made in our analysis
invalidate our results as applied to recent experiments in semi-conductor
quantum dots but may apply to measurements made with magnetic atoms placed on
metallic surfaces.Comment: 22 pages, 1 figure; reference update
Cold Feedback in Cooling-Flow Galaxy Clusters
We put forward an alternative view to the Bondi-driven feedback between
heating and cooling of the intra-cluster medium (ICM) in cooling flow galaxies
and clusters. We adopt the popular view that the heating is due to an active
galactic nucleus (AGN), i.e. a central black hole accreting mass and launching
jets and/or winds. We propose that the feedback occurs with the entire cool
inner region (5-30 kpc). A moderate cooling flow does exist here, and
non-linear over-dense blobs of gas cool fast and are removed from the ICM
before experiencing the next major AGN heating event. Some of these blobs may
not accrete on the central black hole, but may form stars and cold molecular
clouds. We discuss the conditions under which the dense blobs may cool to low
temperatures and feed the black hole.Comment: 6 pages, no figures, to appear in the Proceedings of "Heating vs.
Cooling in Galaxies and Clusters of Galaxies", August 2006, Garching
(Germany
Active Galaxies in the UV
In this article we present different aspects of AGN studies demonstrating the
importance of the UV spectral range. Most important diagnostic lines for
studying the general physical conditions as well as the metalicities in the
central broad line region in AGN are emitted in the UV. The UV/FUV continuum in
AGN excites not only the emission lines in the immediate surrounding but it is
responsible for the ionization of the intergalactic medium in the early stages
of the universe. Variability studies of the emission line profiles of AGN in
the UV give us information on the structure and kinematics of the immediate
surrounding of the central supermassive black hole as well as on its mass
itself.Comment: 29 pages, 13 figures, Ap&SS in pres
An oncogenic role for sphingosine kinase 2
While both human sphingosine kinases (SK1 and SK2) catalyze the generation of the pleiotropic signaling lipid sphingosine 1-phosphate, these enzymes appear to be functionally distinct. SK1 has well described roles in promoting cell survival, proliferation and neoplastic transformation. The roles of SK2, and its contribution to cancer, however, are much less clear. Some studies have suggested an antiproliferative/ pro-apoptotic function for SK2, while others indicate it has a prosurvival role and its inhibition can have anti-cancer effects. Our analysis of gene expression data revealed that SK2 is upregulated in many human cancers, but only to a small extent (up to 2.5-fold over normal tissue). Based on these findings, we examined the effect of different levels of cellular SK2 and showed that high-level overexpression reduced cell proliferation and survival, and increased cellular ceramide levels. In contrast, however, low-level SK2 overexpression promoted cell survival and proliferation, and induced neoplastic transformation in vivo. These findings coincided with decreased nuclear localization and increased plasma membrane localization of SK2, as well as increases in extracellular S1P formation. Hence, we have shown for the first time that SK2 can have a direct role in promoting oncogenesis, supporting the use of SK2-specific inhibitors as anti-cancer agents.Heidi A. Neubauer, Duyen H. Pham, Julia R. Zebol, Paul A.B. Moretti, Amanda L. Peterson, Tamara M. Leclercq, Huasheng Chan, Jason A. Powell, Melissa R. Pitman, Michael S. Samuel, Claudine S. Bonder, Darren J. Creek, Briony L. Gliddon and Stuart M. Pitso
- …
