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ABSTRACT

For many years the power of counting clusters of galaxies as a function of their mass has been recognized
as a powerful cosmological probe; however, we are only now beginning to acquire data from dedicated surveys with 
sufcient sky coverage and sensitivity to measure the cluster population out to distances where the dark energy came 
to dominate the Universe’s evolution. One such survey uses the XMM X-ray telescope to scan a large area of sky, 
detecting the X-ray photons from the hot plasma that lies in the deep potential wells of massive clusters of galaxies. 
These clusters appear as extended (not point-like) objects, each providing just a few hundred photons in a typical 
observation. The detection of extended sources in such a low signal-to-noise situation is an important problem in 
astrophysics: we attempt to solve it by using as much prior information as possible, translating our experience with 
wellmeasured clusters to define a “template” cluster that can be varied and matched to the features seen in the XMM 
images. In this work we adapt an existing Monte Carlo analysis code for this problem. Two detection templates were 
dened and their suitability explored using simulated data; the method was then applied to a publically avalable XMM 
observation of a “blank” field. Presented are the encouraging results of this series of experiments, suggesting that this 
approach continue to be developed for future cluster-identication endeavours.

INTRODUCTION

Galaxy clusters are of interest because they are the largest 
gravitationally bound structures in the Universe; their composition 
is believed to be dominated by dark matter. The number density 
of clusters as a function of mass and redshift is a sensitive probe of 
cosmology: the detection of clusters is important to the study of the 
evolution of large scale structure. 

To date, X-ray observations have provided the highest precision 
measurements of galaxy clusters. The heated gas trapped within the 
gravitational potential well of the dark matter emits strongly in the 
X-ray band: much has been learned about the physics of galaxy 
clusters through pointed X-ray observations. However, to discover 
new clusters via their X-ray emission a “blank sky” survey is needed. 
For surveys where the detection of X-ray photons occurs less than 1 
per second, it would be useful to be able to construct an approach to 
distinguish galaxy clusters from other astronomical objects using as 

much information as possible. The angular position on the sky and 
the energy spectrum of the X-ray emission are observable quantities: 
we will use both. 

Objects may be identified based on their angular size; it 
is important to understand the parameters that may affect this 
observed spatial extent. The smearing of a point source to appear 
wider is due to the telescope’s point spread function (PSF): a point 
source is understood to have the spatial extent of the PSF. Any 
source observed to be larger is by definition extended (Figure 1). 
The physical sizes of the two most abundant X-ray sources, active 
galactic nuclei (AGN) and galaxy clusters, are such that, when placed 
at cosmological distances (100’s of Mpc) the former appear point-
like, and the latter extended. Typical cluster sizes are ~100 Kpc at 
the cluster, and appear with arcminute angular diameters. However, 
some clusters are smaller than this and the X-ray emission is more 
concentrated than the physical extent of the cluster gas so that 
there is some possibility of confusion, especially if the PSF is large. 



U.S. Department of Energy Journal of Undergraduate Research   79

http://www.scied.science.doe.gov

The AGN emission comes from a comparatively very small region 
around the black hole at the center of the galaxy and always appear 
point-like. It is important to keep in mind that it is possible for two 
AGN to be aligned and may appear as a single extended source. 

The classification of an object can also be determined by spectral 
analysis. AGN are known to have power law spectra, whereas cluster 
spectra go as ∝ exp(-hν/kT) [1], with distinct line features produced 
by ions in the intracluster gas. To some extent it is possible to mimic 
a cluster spectrum with a AGN spectrum, and vice versa: one of the 
aims of this work is to investigate this degeneracy.

We use data from the XMM Newton observatory; this telescope 
currently provides the largest collection area and field of view, making 
it the present instrument of choice for blank sky surveys. Specifically 
we focus on spectroimages taken with XMM-Newton’s European 
Photon Imaging Camera (EPIC). EPIC has three cameras, two Metal 
Oxide Semiconductor (MOS) charge-coupled devices (CCDs) and 
one PN CCD. As photons strike the CCDs, the location of the event 
and the photon energy is recorded. The analyzed observation data is 
simply a list of photon CCD coordinates and energies. 

We are interested in detecting and classifying objects in 
previously unobserved areas of sky: the XMM-Newton Large Scale 
Structure survey is a large program designed with this end in mind 
[2]. The observations cover an 8x8 deg2 section of sky centered at 
2h 18m 00s, -7º 00’ 00’’ , and are comprised of 24 x 24 obervations 
each with a field of view of some 30 arcminutes in diameter. 

The PSF of all X-ray telescopes is energy dependent: the 
chromatic aberrations in the optics are significant. To properly 
correct for this the data must be simulated using Monte Carlo 
methods; the analysis code for doing this is called X-ray Monte 
Carlo (XMC) [3]. While used extensively in the analysis of single 
cluster observations, here we apply this “forward folding” approach 
to the analysis of survey data containing both AGN and clusters, 
and use both the spectral and spatial information to distinguish the 
objects. We do this by defining a flexible template for each object 
(or part-object), and then fitting the parameters of these templates 
to the data.

In the first section we discuss the experiments performed on 
simulated data to test our ability to locate and identify objects based 

on their spatial and spectral properties; in the second section we 
present results from an analysis of an XMM blank field. We discuss 
our findings and draw brief conclusions in the final section.

METHODS

In this section we give a brief description of the analysis code 
used, and then outline a number of experiments designed to explore 
the suitability of the template-fitting approach. 

A. Overview of XMC

Given noise-free data, the inferences drawn using XMC would 
extend to all parameters of all the astronomical objects in the eld. 
How well this task can be accomplished depends on the quality of the 
dataset; X-ray data are typically quite noisy, with very few photons 
per bin in energy and detector position.

It is first necessary to provide XMC with input, either a 
previously created simulation or data from an observation. A model 
is then created to test against the data. The model’s parameters will 
be set with initial trial values and a range that the parameters are 
allowed to explore. XMC generates a set of simulated data, which 
are compared with the real data using a two-sample multinomial 
likelihood function, adjusts the simulated data and repeats. For 
each iteration it returns a set of all parameters being explored and 
the mist statistic(χ2).  The lower the value of this mist, the closer 
the mock data is to that of the real data. The parameter space is 
explored using the Markov Chain Monte Carlo technique [4], the 
end result of which is an ensemble of parameter sets that define 
models which all fit the real data acceptably well. For each model 
a mock sky can be plotted; by averaging these maps, deconvolved 
images can be reconstructed. This can be done separately for the 
AGN and cluster parts of the model: combining these images in 
different color channels (for instance, plotting AGN photons in 
green and cluster photons in red) allows the user, at a glance, to get 
an idea of the nature of objects analyzed.

Figure 1. Here a point source is represented by a Gaussian based 
on the smearing affect of the Point Spread Function. The green curve 
is a representation of a cluster model. 
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Figure 2. The main window of the XMC windows shows the spectra 
(real and fitted). The upper right shows the locations of the input data 
and the bottom right XMC’s inferred location.
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Figure 2 shows the real time progress window displayed by 
XMC, allowing a user to monitor the evolution of the spatial and 
spectral analysis. This display shows the user the location of the input 
data as well as the location of the tted objects. The main windows 
displays the spectral analysis. 

B. Experiment 1

First a simulation was dened using a pointlike AGNspectrum 
object centered in the field of view. This simulated data was then 
analysed assuming the same model. All parameters of the model were 
xed at the true values save one, so that the object and the model 
were identical except for the object location. This one coordinate 
was then allowed to vary, to see if XMC could locate an object in a 
single spatial direction. 

The simulation object’s location parameter, Phi, was set at 
a value of -60. The variation in mist as the model Phi value was 
changed is shown in Figure 3. As shown in the plot the lowest misfitt 
value corresponds with the correct parameter value.When applying 
this same technique to the Psi coordinate, an error was discovered 
and corrected in the XMC code when the program failed to locate 
the object. It is interesting to note the slope of the curve in this plot. 
As XMC’s estimation of the parameter value approaches that of the 
simulation, the slope sharpens drastically, while the slope levels out 
the further away one gets from the true value. From this we can better 
understand the burn in time required for XMC. For the first few 
hundred iterations the program simply “guesses” parameter values 
in the specied allowed range and records a misfit value until it has 
enough data points to recognize sloping curves, making it possible 
to hone in on the parameter value. However, to some extent XMC 
is always guessing; the χ2 simply helps XMC judge when and how 
much to adjust a parameter.

C. Experiment 2

The purpose of this second experiment is to determine whether 
or not XMC can recover the nature of a simulated object at fixed 
position. The spectral signatures of AGN and clusters are fairly well-
defined; we use the community standard analysis code XSPEC to 
calculate predicted spectra given model parameters. We also need to 
define a spatial model for the emission from each object, and here 
we investigate two approaches. Both entail the superposition of two 
spatial models, one for each spectral type. The centroids of the two 
components are tied together, and the fraction of flux associated with 
each is allowed to vary: this parameter encodes the “clusterness” of 
the object. We refer to these two-component models as “blobs”. 

In the first approach we envisage fitting one two-component 
model to each object in the field: in this case it makes sense to make 
the spatial emission distribution as close to what is already known 
about clusters and AGN as seen in X-ray observations. Hence, we 
assign the AGN flux component a delta-function spatial distribution 
(making it a true point source). For the cluster we use the surface 
brightness given by Sarazin [1], 
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where r is the radius of the cluster and rc is the core radius and 
is the parameter allowed to vary within XMC. The parameter β has 
been calculated for many pointed observations and for the simplicity 
of the simulation was set to 0.66 in accordance to these findings. 

In the second approach we admit the possibility of more 
complex objects, and attempt to build these from superpositions 
of many models, each of some general spatial model. We choose a 
Gaussian distribution, 
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where σ is the parameter allowed to vary within XMC. For a 
truly point-like source the delta function model is at first sight the 
better option, but allowing in the spatial Gaussian model to become 
arbitrarily small achieves the same aim. When combining many blobs 
to represent an object, do the Gaussians do a better job of dealing 
with the smearing effect of the PSF on a point source? 

Experiment 2 consisted of two tests. In the first, a point-like 
AGN object was simulated, centered on the exposure map. This 
simulated data was then fitted using XMC with a blob of the first 
kind (beta model plus delta function). The core radius of the beta 
model component and the spectral parameters of both were allowed 
to vary. In the second test, the simulation was identical, but the blob 
used in the analysis was of the second kind (two Gaussian spatial 
models, with equal extent, one with AGN spectrum and and one 
with cluster spectrum). In both tests, XMC was used to explore the 
spatial and spectral parameters of the model and return the fraction 
of photons that were “AGN-like” and “cluster-like”. 

As can be seen in Figure 4, XMC has correctly inferred that 
the simulation object was an AGN. The spatial extent corresponds 

Figure 3. Plot of misfit χ2 vs. Phi. XMC located the AGN simulation 
with 3000 photons and again with 35000 photons. 
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closely to the XMM PSF, with a diameter of about 6 arcseconds. 
The blobs of this run consisted of a point source model and Beta 
model. The number of photons XMC determined to be of AGN 
origin is approximately 1000 times greater than cluster photons. This 
information can be used to give a rough estimate on the probability 
of being an AGN. The results of the blobs with two spatial Gaussians 
tied together were similar. However, the ratio of AGN to cluster flux 
was not as extreme. This can be understood in terms of the different 
spatial models used: if the data are well represented by a beta model 
plus delta function, then we would expect this model to perform 
better in the classification of the object from noisy simulated data. 
We shall see in section III that real astronomical objects are less 
clear-cut cases. 

D. Experiment 3

A final simulation was created using a mixture of AGN and 
cluster objects (three of each) placed in various locations on the sky. 
Again two tests were run. The analysis blobs were the same as the ones 
used in experiment 2. Six blobs were used to match the six simulation 
objects. The objective of this experiment was to ascertain the ability 
of XMC to track the location, spatial and spectral parameters of 
each object simultaneously. Knowing that XMC can locate and 
distinguish simulation objects, it is necessary to evaluate how well 
XMC can distinguish objects in close proximity of one another. In 
the upper right corner of this simulation two AGN were placed near 
one another, and both were located within the radius of a cluster 
object, so that XMC must distinguish between three tightly packed 
objects. In the center of the field was placed a cluster. A cluster was 
placed in the bottom left and an AGN in the top left. 

The results (Figure 5) show our ability to identify the two AGN 
and cluster in the upper right corner. However, there seems to be 

some ambiguity with XMC’s classification of the other objects. The 
two remaining cluster objects appear to have just as much AGN 
flux as cluster flux. 

The upper right conglomeration of three objects has some 
cluster (red) but is dominated by AGN (green). This indicates that 
XMC can distinguish objects near or overlapping one another. 
However, the purely cluster object has a significant amount of AGN 
flux to it. This effect is analyzed in the final section.

 XMM DATA 

We now go on to apply the methodology introduced and 
demonstrated in the previous section to real XMM data. A dataset 
from the Large Scale Structure survey was retrieved from the on-
line archive, and reduced to a list of photon locations and energies 
readable by XMC. It is interesting to note some features of the 
EPIC cameras. We can see (Figure 6) the PSF affects the objects in 
the exposure map. The central objects all have a width of about 6 
arcseconds and up to 20 arcseconds at the edges of the field of view. 
In the upper left corner there is an object which is much larger than 
any other object. This could be the PSF greatly smearing the object 
near the edge of the camera or this could be an extended source. 
The gaps between the CCDs is also noticeable in the exposure map 
(only the data from the PN CCDs were used). 

For simulations, the number of objects is known and creating the 
number of model objects to be the same is simple enough. However 
when analyzing real data, the number of objects will not be known, 
so it is necessary to take a somewhat different approach. Experience 
with pointed observations suggests that a combination of Gaussian 
components (typically ~100 ) is a good way of characterising a 
complex image. For this analysis we used blobs of the second kind; 
to recap, these are two concentric Gaussians of equal size, that differ 
in their spectral properties. The fraction of the flux assigned to each 
spectral component is an indication of the “clusterness” of that blob. 
Bright objects in the data can then be built up from collections of 
blobs, whose clusterness fraction should change during the XMC 
analysis to reflect the spectral type of the object. 

When dealing with real data, the background emission has to 
be taken into account. This was modelled as a spatially uniform 
distribution, composed of a variable fraction of high energy particles 

Figure 4. The simulation was set as an AGN located at the 
center of the field. The model was allowed to vary between AGN 
and cluster parameters. XMC determined that the simulation 
photons consisted that of only AGN to one part in 1000. 

Figure 5. The left picture shows the locations and sizes of the objects 
before analysis. The more spread out objects are the clusters. In the 
right picture the 3 cluster & 3 AGN objects can be seen. The central 
and bottom left corner objects are clusters, in the top right two AGN 
and top left another AGN. XMC located every object but the two clusters 
still have significant AGN flux. 
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and the remainder detector noise. The flux from this background 
can be predicted and fitted to the data at the same time as the blobs. 
Note that the astronomical X-ray background was not included in 
this way: the X-ray background is made up of clusters and AGN 
and is in fact what we are trying to detect. 

It can be seen that in areas between the CCDs, XMC assumes 
there is flux, although no data is actually recorded by the telescope 
in these regions. When the data from the MOS detector along with 
the PN is used the gaps between the CCDs will be resolved. 

Comparing the raw photon counts map (Figure 6) with the 
output from XMC, we see that the majority of features in the former 
are detected in the latter. In a survey such as this, it was expected 
that 70% of the objects would be AGN. As is shown in Figure 7, 
all the objects have some AGN component associated with them. 
However, a significant number of objects seem to have a considerable 
amount of cluster flux as well. 

Focusing on the object in the top left hand corner of the field, 
which seems to be smeared, we see both AGN and cluster flux. Also, 
the elongation of the reconstructed object is much greater than that 
of the object in the data. This could possibly be the greater PSF of 
the telescope at the edges, smearing the object. However, one would 
expect the reconstructed image to be similar to that of the exposure 
map. Considering that this object is the brightest in the field of view, 
it is possible that XMC positioned a majority of the 100 blobs on 
this one object; with the averaging process comes some variance, 
which is seen as a smearing in the recontructed image. Further work 
should include study of this dilution effect, especially in regard to 
the classification of objects. 

DISCUSSION AND CONCLUSIONS 

The test runs provided some level of confidence in our ability 
to locate and distinguish astronomical objects using template-
fitting with XMC. The accuracy achieved for simple simulation 
was encouraging. When complicating a test run by introducing a 

larger number of blobs, the program became slower, because of the 
greater number of parameters to be varied. 

In experiment 2, there seemed to be some ambiguity of 
the nature of the object when using the spatial Gaussian blobs. 
However, some ambiguity is to be expected when allowing the spatial 
parameters of the Gaussians to vary. By tying the parameter of each 
Gaussian, the model with AGN spectrum would be allowed to grow 
to the size of a cluster, whereas the model with cluster spectrum 

would also be allowed to shrink to the size of the telescope’s PSF. The 
extra degree of freedom allowed provides us with useful information 
on the ability of the program to determine astronomical objects. 

The six blobs in experiment 3 successfully matched the location 
of the simulated objects. However, the nature of the objects was not 
determined accurately. Whilst this may be due to the relatively low 
number of iterations XMC was allowed to make, there is also some 
considerable degeneracy between the different spectral and spatial 
signatures of the two classes of objects considered. The spectra of the 
mock data are suffieciently similar to allow for the fitting of cluster 
spectra to a power-law within the uncertanties of the data, so that a 
power-law spectrum seems to be an acceptable fit to a cluster image, 
leading to the question of spatial extent. Given the wide range in the 
variable assigned to the size of a cluster, may indicate that extended 
source distributions fit poorly to AGN images, leaving the purely 
green AGN spots in Figure 5. However when analyzing a cluster 
image, the PSF of a point source may be large enough to fit both 
photon ditributions to the image. 

This was also seen in the analysis of the XMM data: Figure 7 
shows many objects with ambiguous classifications for reasons seen 
in experiment 3. However, this image clearly contains an incredible 
amount of information. A large number of objects are detected, and 
the range of colors is impressive: the objects are not all yellow! 

Figure 6. A single field from the Large Scale Structure 
survey, LSS-20. The field is 30 arcmin wide; this image is a 
simple histogram of photon counts. 

Figure 7. The results of the LSS-20 analysis with green representing 
AGN flux and red representing that from clusters. 
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The results of the LSS data suggest that using multiple blobs to 
reconstruct a single object is a viable procedure for distinguishing 
objects. Averaging the ensemble of models generated by XMC to 
make a deconvolved map demonstrates the effectiveness of the 
program’s ability to locate objects. The color representation of 
AGN and cluster flux has allowed rough estimates of the object 
classification probability to be made. 

The methodology demonstrated in this work, whilst not 
without teething problems, seems to us to deserve further effort in 
its development. The major benefits it brings include full propagation 
of errors from noisy data to reconstructed image, correct treatment 
of a PSF that varies both spectrally and across the image, the input 
of sensible prior knowledge (via the choice of blob surface brightness 
distributions and spectra), and the separation and visualisation of 
the two putative image components without the need for isolation 
of individual objects (which often lie in close proximity to each 
other). 

ACKNOWLEDGMENTS 

We thank Alex Refregier for bringing our attention to the 
problem of LSS analysis. J. Piacentine was supported by funding 
from the Department of Energy, Office of Science during a summer 
internship at Stanford Linear Accelerator Center. This work was 
supported in part by the U.S. Department of Energy under contract 
number DE-AC02-76SF00515.

REFERENCES 

[1] C. L. Sarazin, X-ray emission from Clusters of Galaxies, 
Cambridge University Press (2004) 

[2] M. Pierre et al, J. Cosmol. Astropart. Phys., 9, 11 (2004) 

[3] J.R. Peterson, J.G. Jernigan, and S.M. Kahn, Multivariate 
Monte Carlo Methods for the Reflection Grating Spectrom-
eters on XMM-Newton, ApJ, 615, 545 (2004) 

[4] W.R. Gilks, S. Richardson, and D.J. Spiegelhalter, Markov-
Chain Monte-Carlo In Practice, Cambridge: Chapman and 
Hall (1996) 


