2,407 research outputs found

    The impact of cirrus clouds on tropical troposphere-to-stratosphere transport

    No full text
    International audienceAlthough it is well known that air enters the stratosphere preferentially through upwelling in the tropics, the exact mechanisms of troposphere-to-stratosphere transport (TST) are still unknown. Previously proposed mechanisms have been found either to be too slow (e.g., clear sky upwelling) to provide agreement with in situ tracer measurements, or to be insufficient in mass flux to act as a major supply for the Brewer-Dobson circulation (e.g., convective overshooting). In this study we evaluate whether the lofting of air via cirrus cloud-radiation interaction might offer an alternative path for TST, which is responsible for a significant fraction of the observed air mass transport. We find that a combination of deep convection and subsequent upwelling associated with cirrus clouds and clear sky can explain the supply of air for the Brewer-Dobson circulation. Thus, upwelling associated with cirrus clouds offers a mechanism for the missing second stage, which links the first stage of TST, deep convection, to the third stage, the Brewer-Dobson circulation

    Altimetric system: Earth observing system. Volume 2h: Panel report

    Get PDF
    A rationale and recommendations for planning, implementing, and operating an altimetric system aboard the Earth observing system (Eos) spacecraft is provided. In keeping with the recommendations of the Eos Science and Mission Requirements Working Group, a complete altimetric system is defined that is capable of perpetuating the data set to be derived from TOPEX/Poseidon, enabling key scientific questions to be addressed. Since the scientific utility and technical maturity of spaceborne radar altimeters is well documented, the discussion is limited to highlighting those Eos-specific considerations that materially impact upon radar altimetric measurements

    Pyrrolizidine Alkaloids - Tumorigenic Components in Chinese Herbal Medicines and Dietary Supplements

    Get PDF
    [[abstract]]Traditional Chinese medicine (TCM) has long been used for treating illness in China and other Asian countries, and recently used by the Western countries in several different ways, either for new drug development, or as functional foods and dietary supplements. However, quality assurance and health adverse effects of the herbal plants have not been well studied. Pyrrolizidine alkaloids, a class of hepatotoxic and tumorigenic compounds, have been detected in herbal plants and dietary supplements. In this review, the sources of the pyrrolizidine alkaloid-containing Chinese herbal plants in China and the toxicity, genotoxicity, and tumorigenicity of these compounds are discussed. The metabolic pathways, particularly the activation pathways leading to genotoxicity, are discussed. Recent mechanistic studies indicate that pyrrolizidine alkaloids induce tumors via a genotoxic mechanism mediated by 6,7-dihydro-7-hydroxy-1-hydroxymethyl- 5H-pyrrolizine (DHP)-derived DNA adduct formation. This mechanism may be general to most carcinogenic pyrrolizidine alkaloids. Perspectives are included for suggestion of directions of future research

    Invariant sets for discontinuous parabolic area-preserving torus maps

    Get PDF
    We analyze a class of piecewise linear parabolic maps on the torus, namely those obtained by considering a linear map with double eigenvalue one and taking modulo one in each component. We show that within this two parameter family of maps, the set of noninvertible maps is open and dense. For cases where the entries in the matrix are rational we show that the maximal invariant set has positive Lebesgue measure and we give bounds on the measure. For several examples we find expressions for the measure of the invariant set but we leave open the question as to whether there are parameters for which this measure is zero.Comment: 19 pages in Latex (with epsfig,amssymb,graphics) with 5 figures in eps; revised version: section 2 rewritten, new example and picture adde

    Scope for improved eco-efficiency varies among diverse cropping systems

    Get PDF
    Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat–maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems

    Criticality and Superfluidity in liquid He-4 under Nonequilibrium Conditions

    Full text link
    We review a striking array of recent experiments, and their theoretical interpretations, on the superfluid transition in 4^4He in the presence of a heat flux, QQ. We define and evaluate a new set of critical point exponents. The statics and dynamics of the superfluid-normal interface are discussed, with special attention to the role of gravity. If QQ is in the same direction as gravity, a self-organized state can arise, in which the entire sample has a uniform reduced temperature, on either the normal or superfluid side of the transition. Finally, we review recent theory and experiment regarding the heat capacity at constant QQ. The excitement that surrounds this field arises from the fact that advanced thermometry and the future availability of a microgravity experimental platform aboard the International Space Station will soon open to experimental exploration decades of reduced temperature that were previously inaccessible.Comment: 16 pages, 9 figures, plus harvard.sty style file for references Accepted for publication in Colloquia section of Reviews of Modern Physic

    Quantum critical point in a periodic Anderson model

    Full text link
    We investigate the symmetric Periodic Anderson Model (PAM) on a three-dimensional cubic lattice with nearest-neighbor hopping and hybridization matrix elements. Using Gutzwiller's variational method and the Hubbard-III approximation (which corresponds to the exact solution of an appropriate Falicov-Kimball model in infinite dimensions) we demonstrate the existence of a quantum critical point at zero temperature. Below a critical value VcV_c of the hybridization (or above a critical interaction UcU_c) the system is an {\em insulator} in Gutzwiller's and a {\em semi-metal} in Hubbard's approach, whereas above VcV_c (below UcU_c) it behaves like a metal in both approximations. These predictions are compared with the density of states of the dd- and ff-bands calculated from Quantum Monte Carlo and NRG calculations. Our conclusion is that the half-filled symmetric PAM contains a {\em metal-semimetal transition}, not a metal-insulator transition as has been suggested previously.Comment: ReVteX, 10 pages, 2 EPS figures. Minor corrections made in the text and in the figure captions from the first version. More references added. Accepted for publication in Physical Review

    A Dual-Readout F2 Assay That Combines Fluorescence Resonance Energy Transfer and Fluorescence Polarization for Monitoring Bimolecular Interactions

    Full text link
    Forster (fluorescence) resonance energy transfer (FRET) and fluorescence polarization (FP) are widely used technologies for monitoring bimolecular interactions and have been extensively used in high-throughput screening (HTS) for probe and drug discovery. Despite their popularity in HTS, it has been recognized that different assay technologies may generate different hit lists for the same biochemical interaction. Due to the high cost of large-scale HTS campaigns, one has to make a critical choice to employee one assay platform for a particular HTS. Here we report the design and development of a dual-readout HTS assay that combines two assay technologies into one system using the Mcl-1 and Noxa BH3 peptide interaction as a model system. In this system, both FP and FRET signals were simultaneously monitored from one reaction, which is termed -Dual-Readout F2 assay- with F2 for FP and FRET. This dual-readout technology has been optimized in a 1,536-well ultra-HTS format for the discovery of Mcl-1 protein inhibitors and achieved a robust performance. This F2 assay was further validated by screening a library of 102,255 compounds. As two assay platforms are utilized for the same target simultaneously, hit information is enriched without increasing the screening cost. This strategy can be generally extended to other FP-based assays and is expected to enrich primary HTS information and enhance the hit quality of HTS campaigns.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90469/1/adt-2E2010-2E0292.pd
    corecore