161 research outputs found

    Relation between antimicrobial use and resistance in Belgian pig herds

    Get PDF
    The aim of this study was to determine the link between the characteristics of antimicrobial therapy and occurrence of antimicrobial resistance in Escherichia coli of clinically healthy pigs exposed to antimicrobial treatments. A total of 918 Escherichia coli isolates were obtained from faecal samples, collected from 50 pig herds at the end of the fattening period and susceptibility was tested towards 15 different antimicrobial agents, using the disk diffusion method

    4-Octyl itaconate reduces influenza A replication by targeting the nuclear export protein CRM1

    Get PDF
    In recent years, especially since the outbreak of the severe acute respiratory syndrome coronavirus 2 pandemic, the cell-permeable itaconate derivative 4-octyl itaconate (4-OI) has gained traction as a potential antiviral agent. Here, we demonstrate that 4-OI inhibits replication of multiple influenza A viruses (IAV) by restricting nuclear export of viral ribonucleoproteins, a key step in the IAV replication cycle. This nuclear retention is achieved by deactivation and subsequent degradation of chromosomal maintenance 1 protein (CRM1), also known as exportin 1 (XPO1), a host cell protein exploited by IAV during replication. 4-OI-mediated deactivation of CRM1 resulted in the accumulation of the IAV nucleoprotein, the Rev protein of feline immunodeficiency virus, as well as the natural CRM1 cargos p53 and p65, in the nucleus of treated cells. Further mechanism of action studies revealed that, similar to known CRM1 inhibitors, 4-OI modifies a key cysteine in the cargo binding pocket of CRM1 at position 528 through an alkylation reaction called 2,3-dicarboxypropylation. Subsequent studies in a cell line in which the cysteine at position 528 in CRM1 protein was substituted by a serine confirmed that modification of this residue was indeed the cause for the observed inhibitory effect induced by 4-OI on CRM1 function. Overall, this study demonstrated a mechanism through which 4-OI directly interferes with the replication cycle of CRM1-dependent viruses, which contributes to the understanding of the antiviral and anti-inflammatory properties of this multifaceted immuno-metabolite. IMPORTANCE Itaconate derivates, as well as the naturally produced metabolite, have been proposed as antivirals against influenza virus. Here, the mechanism behind the antiviral effects of exogenous 4-octyl itaconate (4-OI), a derivative of itaconate, against the influenza A virus replication is demonstrated. The data indicate that 4-OI targets the cysteine at position 528 of the CRM1 protein, resulting in inhibition of the nuclear export of viral ribonucleoprotein complexes in a similar manner as previously described for other selective inhibitors of nuclear export. These results postulate a mechanism not observed before for this immuno-metabolite derivative. This knowledge is helpful for the development of derivatives of 4-OI as potential antiviral and anti-inflammatory therapeutics.</p

    Increased virulence of Puccinia coronata f. sp.avenae populations through allele frequency changes at multiple putative Avr loci

    Get PDF
    Author summary The rust fungus Puccinia coronata f. sp. avenae (Pca), which causes crown rust disease, decimates oat (Avena sativa) production in many countries of the world. While the use of genetic resistance in crop breeding programs is the most sustainable disease management strategy to control plant disease, the release of oat varieties that display genetic resistance to Pca infection is hindered by rapid evolution of this pathogen. This study aims to determine demography and determinants of adaptive evolution in Pca to minimize the risk of disease outbreaks and enhance resistance gene stewardship. We recently published two high quality genome references of P. coronata f. sp. avenae. Here, we used these resources to direct a population genomics-based study of two temporally distant sets of pathogen collections to study genotypic changes that may explain the most recent oat crown rust epidemics across the continental US. We found that the population of Pca in 1990 is significantly different to that collected in 2015 at both genotypic and phenotypic levels. Our findings are consistent with the role of sexual and asexual reproduction in the Pca population diversity. Importantly, our work identifies genomic regions and genes that may be involved in local host adaptation which in the future may assist in the development of molecular markers and diagnosis of virulence

    Guidance on the Selection of Appropriate Indicators for Quantification of Antimicrobial Usage in Humans and Animals

    Get PDF
    An increasing variety of indicators of antimicrobial usage has become available in human and veterinary medicine, with no consensus on the most appropriate indicators to be used. The objective of this review is therefore to provide guidance on the selection of indicators, intended for those aiming to quantify antimicrobial usage based on sales, deliveries or reimbursement data. Depending on the study objective, different requirements apply to antimicrobial usage quantification in terms of resolution, comprehensiveness, stability over time, ability to assess exposure and comparability. If the aim is to monitor antimicrobial usage trends, it is crucial to use a robust quantification system that allows stability over time in terms of required data and provided output; to compare usage between different species or countries, comparability must be ensured between the different populations. If data are used for benchmarking, the system comprehensiveness is particularly crucial, while data collected to study the association between usage and resistance should express the exposure level and duration as a measurement of the exerted selection pressure. Antimicrobial usage is generally described as the number of technical units consumed normalized by the population at risk of being treated in a defined period. The technical units vary from number of packages to number of individuals treated daily by adding different levels of complexity such as daily dose or weight at treatment. These technical units are then related to a description of the population at risk, based either on biomass or number of individuals. Conventions and assumptions are needed for all of these calculation steps. However, there is a clear lack of standardization, resulting in poor transparency and comparability. By combining study requirements with available approaches to quantify antimicrobial usage, we provide suggestions on the most appropriate indicators and data sources to be used for a given study objective
    corecore