135 research outputs found

    Percutaneous treatment of mitral regurgitation by MitraClipTM: report on the first two procedures in Brazil

    Get PDF
    AbstractThe MitraClipTM system has been recently approved for clinical use in Brazil for percutaneous treatment of mitral valve regurgitation. This device is based on the Alfieri surgical procedure, creating a double orifice by bringing together the central segments of the two mitral valve cusps. This report describes the first two procedures performed in Brazil using this device. Two female patients considered to be at high surgical risk due to advanced age and presence of comorbidities were treated, with degenerative mitral regurgitation due to prolapse/flail, associated with chordae tendineae rupture. In both cases, significant mitral regurgitation intensity reduction was obtained using the MitraClipTM, demonstrating the great potential of this innovative technology for the percutaneous treatment of mitral valve regurgitation

    A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization

    Get PDF
    BACKGROUND: The need for repeated treatment of restenosis of a treated vessel remains the main limitation of percutaneous coronary revascularization. Because sirolimus (rapamycin) inhibits the proliferation of lymphocytes and smooth-muscle cells, we compared a sirolimus-eluting stent with a standard uncoated stent in patients with angina pectoris. METHODS: We performed a randomized, double-blind trial to compare the two types of stents for revascularization of single, primary lesions in native coronary arteries. The trial included 238 patients at 19 medical centers. The primary end point was in-stent late luminal loss (the difference between the minimal luminal diameter immediately after the procedure and the diameter at six months). Secondary end points included the percentage of in-stent stenosis of the luminal diameter and the rate of restenosis (luminal narrowing of 50 percent or more). We also analyzed a composite clinical end point consisting of death, myocardial infarction, and percutaneous or surgical revascularization at 1, 6, and 12 months. RESULTS: At six months, the degree of neointimal proliferation, manifested as the mean (+/-SD) late luminal loss, was significantly lower in the sirolimus-stent group (-0.01+/-0.33 mm) than in the standard-stent group (0.80+/-0.53 mm, P<0.001). None of the patients in the sirolimus-stent group, as compared with 26.6 percent of those in the standard-stent group, had restenosis of 50 percent or more of the luminal diameter (P<0.001). There were no episodes of stent thrombosis. During a follow-up period of up to one year, the overall rate of major cardiac events was 5.8 percent in the sirolimus-stent group and 28.8 percent in the standard-stent group (P<0.001). The difference was due entirely to a higher rate of revascularization of the target vessel in the standard-stent group. CONCLUSIONS: As compared with a standard coronary stent, a sirolimus-eluting stent shows considerable promise for the prevention of neointimal proliferation, restenosis, and associated clinical events

    Predictive Value of Tumor Ki-67 Expression in Two Randomized Trials of Adjuvant Chemoendocrine Therapy for Node-Negative Breast Cancer

    Get PDF
    Several small studies have reported that having a high percentage of breast tumor cells that express the proliferation antigen Ki-67 (ie, a high Ki-67 labeling index) predicts better response to neoadjuvant chemotherapy. However, the predictive value of a high Ki-67 labeling index for response to adjuvant chemotherapy is unclear. To investigate whether Ki-67 labeling index predicts response to adjuvant chemoendocrine therapy, we assessed Ki-67 expression in tumor tissue from 1924 (70%) of 2732 patients who were enrolled in two randomized International Breast Cancer Study Group trials of adjuvant chemoendocrine therapy vs endocrine therapy alone for node-negative breast cancer. A high Ki-67 labeling index was associated with other factors that predict poor prognosis. Among the 1521 patients with endocrine-responsive tumors, a high Ki-67 labeling index was associated with worse disease-free survival but the Ki-67 labeling index did not predict the relative efficacy of chemoendocrine therapy compared with endocrine therapy alone. Thus, Ki-67 labeling index was an independent prognostic factor but was not predictive of better response to adjuvant chemotherapy in these studie

    Targets for high repetition rate laser facilities: Needs, challenges and perspectives

    Get PDF
    A number of laser facilities coming online all over the world promise the capability of high-power laser experiments with shot repetition rates between 1 and 10Ã\u82 Hz. Target availability and technical issues related to the interaction environment could become a bottleneck for the exploitation of such facilities. In this paper, we report on target needs for three different classes of experiments: Dynamic compression physics, electron transport and isochoric heating, and laser-driven particle and radiation sources. We also review some of the most challenging issues in target fabrication and high repetition rate operation. Finally, we discuss current target supply strategies and future perspectives to establish a sustainable target provision infrastructure for advanced laser facilities

    Activation of Regulatory T Cells during Inflammatory Response Is Not an Exclusive Property of Stem Cells

    Get PDF
    BACKGROUND: Sepsis and systemic-inflammatory-response-syndrome (SIRS) remain major causes for fatalities on intensive care units despite up-to-date therapy. It is well accepted that stem cells have immunomodulatory properties during inflammation and sepsis, including the activation of regulatory T cells and the attenuation of distant organ damage. Evidence from recent work suggests that these properties may not be exclusively attributed to stem cells. This study was designed to evaluate the immunomodulatory potency of cellular treatment during acute inflammation in a model of sublethal endotoxemia and to investigate the hypothesis that immunomodulations by cellular treatment during inflammatory response is not stem cell specific. METHODOLOGY/PRINCIPAL FINDINGS: Endotoxemia was induced via intra-peritoneal injection of lipopolysaccharide (LPS) in wild type mice (C3H/HeN). Mice were treated with either vital or homogenized amniotic fluid stem cells (AFS) and sacrificed for specimen collection 24 h after LPS injection. Endpoints were plasma cytokine levels (BD™ Cytometric Bead Arrays), T cell subpopulations (flow-cytometry) and pulmonary neutrophil influx (immunohistochemistry). To define stem cell specific effects, treatment with either vital or homogenized human-embryonic-kidney-cells (HEK) was investigated in a second subset of experiments. Mice treated with homogenized AFS cells showed significantly increased percentages of regulatory T cells and Interleukin-2 as well as decreased amounts of pulmonary neutrophils compared to saline-treated controls. These results could be reproduced in mice treated with vital HEK cells. No further differences were observed between plasma cytokine levels of endotoxemic mice. CONCLUSIONS/SIGNIFICANCE: The results revealed that both AFS and HEK cells modulate cellular immune response and distant organ damage during sublethal endotoxemia. The observed effects support the hypothesis, that immunomodulations are not exclusive attributes of stem cells

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore