470 research outputs found

    Peroxidases have more functions than a Swiss army knife

    Get PDF
    Plant peroxidases (class III peroxidases) are present in all land plants. They are members of a large multigenic family. Probably due to this high number of isoforms, and to a very heterogeneous regulation of their expression, plant peroxidases are involved in a broad range of physiological processes all along the plant life cycle. Due to two possible catalytic cycles, peroxidative and hydroxylic, peroxidases can generate reactive oxygen species (ROS) (•OH, HOO•), polymerise cell wall compounds, and regulate H2O2 levels. By modulating their activity and expression following internal and external stimuli, peroxidases are prevalent at every stage of plant growth, including the demands that the plant meets in stressful conditions. These multifunctional enzymes can build a rigid wall or produce ROS to make it more flexible; they can prevent biological and chemical attacks by raising physical barriers or by counterattacking with a large production of ROS; they can be involved in a more peaceful symbiosis. They are finally present from the first hours of a plant's life until its last moments. Although some functions look paradoxical, the whole process is probably regulated by a fine-tuning that has yet to be elucidated. This review will discuss the factors that can influence this delicate balanc

    Ethylene Production in Spinach Leaves during Floral Induction

    Get PDF
    Spinach plants were induced to flower by transferring them from short days to continuous light. Their leaf laminae released more ethylene than those from vegetative plants. These leaves also exhibited a greater capacity to convert exogenous ACC into ethylene. Cell wall preparations from the leaves of continuously illuminated plants also converted exogenous ACC into ethylene more readily than extracts from short day plants. These effects and also those previously reported for peroxidases appear very similar to these brought about by various environmental stresses such as pollution and mechanical irritatio

    COMPATIBILITY OF FLUOROCHROME LABELING PROTOCOL WITH RAMAN SPECTROSCOPY TO STUDY BONE FORMATION

    Get PDF
    Oral Communication presented at the ";Forum des Jeunes Chercheurs";, Brest (France) 2011

    Changing concepts in plant hormone action

    Get PDF
    Summary: A plant hormone is not, in the classic animal sense, a chemical synthesized in one organ, transported to a second organ to exert a chemical action to control a physiological event. Any phytohormone can be synthesized everywhere and can influence different growth and development processes at different places. The concept of physiological activity under hormonal control cannot be dissociated from changes in concentrations at the site of action, from spatial differences and changes in the tissue's sensitivity to the compound, from its transport and its metabolism, from balances and interactions with the other phytohormones, or in their metabolic relationships, and in their signaling pathways as well. Secondary messengers are also involved. Hormonal involvement in physiological processes can appear through several distinct manifestations (as environmental sensors, homeostatic regulators and spatio-temporal synchronizers, resource allocators, biotime adjusters, etc.), dependent on or integrated with the primary biochemical pathways. The time has also passed for the hypothesized ‘specific' developmental hormones, rhizocaline, canlocaline, and florigen: root, stem, and flower formation result from a sequential control of specific events at the right places through a coordinated control by electrical signals, the known phytohormones and nonspecific molecules of primary and secondary metabolism, and involve both cytoplasmic and apoplastic compartments. These contemporary views are examined in this revie

    Ethylene Production in Spinach Leaves during Floral Induction

    Full text link

    PPARα transcriptionally induces AhR expression in Caco-2, but represses AhR pro-inflammatory effects

    Get PDF
    International audienceIn this work we demonstrate that Caco-2 cell treatment with WY-14643 (a potent PPARa agonist) causes an increase in AhR expression. Luciferase assays and directed mutagenesis experiments showed that induction mainly occurred at transcriptional level and involved a PPRE site located within the AhR promoter. These results were further confirmed by the use of PPARa knockout mice in which AhR induction by WY14643 was abrogated. In addition to CYP1 regulation, AhR has been described as being involved in inflammation , so we also studied the effect of AhR regulation by PPARa on the expression of some inflammation target genes. 3-Methylcho-lanthrene (a potent AhR agonist) increased the expression (mRNA) of the major inflammatory targets IL-1b and MMP9. WY-14643 co-treatment abrogated the 3-methylcholanthrene pro-inflammatory effect. Hence the anti-inflammatory effect of PPARa overrides the pro-inflammatory effect of AhR
    • …
    corecore