13,609 research outputs found

    Superpixel-based Two-view Deterministic Fitting for Multiple-structure Data

    Full text link
    This paper proposes a two-view deterministic geometric model fitting method, termed Superpixel-based Deterministic Fitting (SDF), for multiple-structure data. SDF starts from superpixel segmentation, which effectively captures prior information of feature appearances. The feature appearances are beneficial to reduce the computational complexity for deterministic fitting methods. SDF also includes two original elements, i.e., a deterministic sampling algorithm and a novel model selection algorithm. The two algorithms are tightly coupled to boost the performance of SDF in both speed and accuracy. Specifically, the proposed sampling algorithm leverages the grouping cues of superpixels to generate reliable and consistent hypotheses. The proposed model selection algorithm further makes use of desirable properties of the generated hypotheses, to improve the conventional fit-and-remove framework for more efficient and effective performance. The key characteristic of SDF is that it can efficiently and deterministically estimate the parameters of model instances in multi-structure data. Experimental results demonstrate that the proposed SDF shows superiority over several state-of-the-art fitting methods for real images with single-structure and multiple-structure data.Comment: Accepted by European Conference on Computer Vision (ECCV

    Measuring hearing in wild beluga whales

    Get PDF
    Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in "The Effects of Noise on Aquatic Life II," edited by Arthur N. Popper, Anthony Hawkins, 729-735. New York, NY: Springer, 2016. doi: 10.1007/978-1-4939-2981-8_88.We measured the hearing abilities of seven wild beluga whales (Delphinapterus leucas) during a collection-and-release experiment in Bristol Bay, AK, USA. Here we summarize the methods and initial data from one animal, discussing the implications of this experiment. Audiograms were collected from 4-150 kHz. The animal with the lowest threshold heard best at 80 kHz and demonstrated overall good hearing from 22-110 kHz. The robustness of the methodology and data suggest AEP audiograms can be incorporated into future collection-and-release health assessments. Such methods may provide high-quality results for multiple animals facilitating population-level audiograms and hearing measures in new species.Project funding and field support provided by Georgia Aquarium and the National Marine Mammal Laboratory of the Alaska Fisheries Science Center (NMML/AFSC). Field work also supported by National Marine Fisheries Service Alaska Regional Office (NMFS AKR), WHOI Arctic Research Initiative, WHOI Ocean Life Institute, U.S. Fish and Wildlife Service, Bristol Bay Native Association, Alaska SeaLife Center, Shedd Aquarium and Mystic Aquarium. Audiogram analyses were funded by the Office of Naval Research award number N000141210203 (from Michael Weise)

    Time evolution of the classical and quantum mechanical versions of diffusive anharmonic oscillator: an example of Lie algebraic techniques

    Full text link
    We present the general solutions for the classical and quantum dynamics of the anharmonic oscillator coupled to a purely diffusive environment. In both cases, these solutions are obtained by the application of the Baker-Campbell-Hausdorff (BCH) formulas to expand the evolution operator in an ordered product of exponentials. Moreover, we obtain an expression for the Wigner function in the quantum version of the problem. We observe that the role played by diffusion is to reduce or to attenuate the the characteristic quantum effects yielded by the nonlinearity, as the appearance of coherent superpositions of quantum states (Schr\"{o}dinger cat states) and revivals.Comment: 21 pages, 6 figures, 2 table

    Mechanistic Modeling of Microtopographic Impacts on CO2 and CH4 Fluxes in an Alaskan Tundra Ecosystem Using the CLM-Microbe Model

    Get PDF
    Spatial heterogeneities in soil hydrology have been confirmed as a key control on CO2 and CH4 fluxes in the Arctic tundra ecosystem. In this study, we applied a mechanistic ecosystem model, CLM-Microbe, to examine the microtopographic impacts on CO2 and CH4 fluxes across seven landscape types in Utqiaġvik, Alaska: trough, low-centered polygon (LCP) center, LCP transition, LCP rim, high-centered polygon (HCP) center, HCP transition, and HCP rim. We first validated the CLM-Microbe model against static-chamber measured CO2 and CH4 fluxes in 2013 for three landscape types: trough, LCP center, and LCP rim. Model application showed that low-elevation and thus wetter landscape types (i.e., trough, transitions, and LCP center) had larger CH4 emissions rates with greater seasonal variations than high-elevation and drier landscape types (rims and HCP center). Sensitivity analysis indicated that substrate availability for methanogenesis (acetate, CO2 + H2) is the most important factor determining CH4 emission, and vegetation physiological properties largely affect the net ecosystem carbon exchange and ecosystem respiration in Arctic tundra ecosystems. Modeled CH4 emissions for different microtopographic features were upscaled to the eddy covariance (EC) domain with an area-weighted approach before validation against EC-measured CH4 fluxes. The model underestimated the EC-measured CH4 flux by 20% and 25% at daily and hourly time steps, suggesting the importance of the time step in reporting CH4 flux. The strong microtopographic impacts on CO2 and CH4 fluxes call for a model-data integration framework for better understanding and predicting carbon flux in the highly heterogeneous Arctic landscape

    Efficient top K temporal spatial keyword search

    Get PDF
    Massive amount of data that are geo-tagged and associated with text information are being generated at an unprecedented scale in many emerging applications such as location based services and social networks. Due to their importance, a large body of work has focused on efficiently computing various spatial keyword queries. In this paper, we study the top-k temporal spatial keyword query which considers three important constraints during the search including time, spatial proximity and textual relevance. A novel index structure, namely SSG-tree, to efficiently insert/delete spatio-temporal web objects with high rates. Base on SSG-tree an efficient algorithm is developed to support top-k temporal spatial keyword query. We show via extensive experimentation with real spatial databases that our method has increased performance over alternate techniques

    Oxygen Degradation in Mesoporous Al<inf>2</inf>O<inf>3</inf>/CH<inf>3</inf>NH<inf>3</inf>PbI<inf>3-</inf><inf>x</inf>Cl<inf>x</inf> Perovskite Solar Cells: Kinetics and Mechanisms

    Get PDF
    The rapid pace of development for hybrid perovskite photovoltaics has recently resulted in promising figures of merit being obtained with regard to device stability. Rather than relying upon expensive barrier materials, realizing market-competitive lifetimes is likely to require the development of intrinsically stable devices, and to this end accelerated aging tests can help identify degradation mechanisms that arise over the long term. Here, oxygen-induced degradation of archetypal perovskite solar cells under operation is observed, even in dry conditions. With prolonged aging, this process ultimately drives decomposition of the perovskite. It is deduced that this is related to charge build-up in the perovskite layer, and it is shown that by efficiently extracting charge this degradation can be mitigated. The results confirm the importance of high charge-extraction efficiency in maximizing the tolerance of perovskite solar cells to oxygen.This work was supported by SABIC and by the EPSRC, including by the Supergen Supersolar Consortium (EP/J017361/1) and the European Union Seventh Framework Program [FP7 2007-2003] under grant agreement 604032 of the MESO project. GE is supported by the EPSRC and Oxford Photovoltaics Ltd. through a Nanotechnology KTN CASE award. JW acknowledges the Swire Educational Trust for supporting his D.Phil. study at Oxford. We thank Sian Dutton (University of Cambridge) for access to XRD facilities and Felix Deschler (University of Cambridge) for helpful discussions.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/aenm.20160001

    Investigation of stress-induced (100) platelet formation and surface exfoliation in plasma hydrogenated Si

    Get PDF
    We have studied the mechanisms underlying stress-induced platelet formation during plasma hydrogenation. The stress is purposely introduced by a buried SiGe stained layer in a Si substrate. During plasma hydrogenation, diffusing H is trapped in the region of the SiGe layer and H platelets are formed. The platelet orientation is controlled by the in-plane compressive stress, which favors nucleation and growth of platelets in the plane of stress and parallel to the substrate surface, and ultimately leads to controlled fracture along the SiGe layer. Also, the SiSiGeSi structure is found to be more efficient in utilizing H for platelet formation and growth compared to H ion implanted Si because there are fewer defects to trap H (e.g., Vn Hm and In Hm); therefore, the total H dose needed for layer exfoliation is greatly reduced. © 2007 American Institute of Physics

    The evolving definition of carcinogenic human papillomavirus

    Get PDF
    Thirteen human papillomavirus (HPV) genotypes have been judged to be carcinogenic or probably carcinogenic, and the cause of virtually all cervical cancer worldwide. Other HPV genotypes could possibly be involved. Although the inclusion of possibly carcinogenic HPV genotypes may hurt test specificity, it may indirectly increase the reassurance following a negative HPV test (i.e. the negative predictive value of an HPV test for cervical precancer and cancer). The future of cervical cancer screening in low-resource setting, however, may include once-in-a-lifetime, low-cost and rapid HPV testing. However, the tradeoff of more false positives for greater reassurance may not be acceptable if the local infrastructure cannot manage the screen positives. Now is the time for the community of scientists, doctors, and public health advocates to use the data presented at the 100th International Agency for Research on Cancer monograph meeting to rationally decide the target HPV genotypes for the next generation of HPV tests for use in high-resource and low-resource settings. The implications of including possibly HPV genotypes on HPV test performance, also for guidance on the use of these tests for cervical cancer prevention programs, are discussed

    The future of canine glaucoma therapy

    Full text link
    Canine glaucoma is a group of disorders that are generally associated with increased intraocular pressure (IOP) resulting in a characteristic optic neuropathy. Glaucoma is a leading cause of irreversible vision loss in dogs and may be either primary or secondary. Despite the growing spectrum of medical and surgical therapies, there is no cure, and many affected dogs go blind. Often eyes are enucleated because of painfully high, uncontrollable IOP. While progressive vision loss due to primary glaucoma is considered preventable in some humans, this is mostly not true for dogs. There is an urgent need for more effective, affordable treatment options. Because newly developed glaucoma medications are emerging at a very slow rate and may not be effective in dogs, work toward improving surgical options may be the most rewarding approach in the near term. This Viewpoint Article summarizes the discussions and recommended research strategies of both a Think Tank and a Consortium focused on the development of more effective therapies for canine glaucoma; both were organized and funded by the American College of Veterinary Ophthalmologists Vision for Animals Foundation (ACVO‐VAF). The recommendations consist of (a) better understanding of disease mechanisms, (b) early glaucoma diagnosis and disease staging, (c) optimization of IOP‐lowering medical treatment, (d) new surgical therapies to control IOP, and (e) novel treatment strategies, such as gene and stem cell therapies, neuroprotection, and neuroregeneration. In order to address these needs, increases in research funding specifically focused on canine glaucoma are necessary.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151896/1/vop12678_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151896/2/vop12678.pd
    corecore