57 research outputs found

    Factors affecting the implementation of complex and evolving technologies: multiple case study of intensity-modulated radiation therapy (IMRT) in Ontario, Canada

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Research regarding the decision to adopt and implement technological innovations in radiation oncology is lacking. This is particularly problematic since these technologies are often complex and rapidly evolving, requiring ongoing revisiting of decisions regarding which technologies are the most appropriate to support. Variations in adoption and implementation decisions for new radiation technologies across cancer centres can impact patients' access to appropriate and innovative forms of radiation therapy. This study examines the key steps in the process of adopting and implementing intensity modulated radiation therapy (IMRT) in publicly funded cancer centres and identifies facilitating or impeding factors.</p> <p>Methods</p> <p>A multiple case study design, utilizing document analysis and key informant interviews was employed. Four cancer centres in Ontario, Canada were selected and interviews were conducted with radiation oncologists, medical physicists, radiation therapists, and senior administrative leaders.</p> <p>Results</p> <p>Eighteen key informants were interviewed. Overall, three centres made fair to excellent progress in the implementation of IMRT, while one centre achieved only limited implementation as of 2009. Key factors that influenced the extent of IMRT implementation were categorized as: 1) leadership, 2) training, expertise and standardization, 3) collaboration, 4) resources, and 5) resistance to change.</p> <p>Conclusion</p> <p>A framework for the adoption and implementation of complex and evolving technologies is presented. It identifies the key factors that should be addressed by decision-makers at specific stages of the adoption/implementation process.</p

    Genetic Structure in the Seabuckthorn Carpenter Moth (Holcocerus hippophaecolus) in China: The Role of Outbreak Events, Geographical and Host Factors

    Get PDF
    Understanding factors responsible for structuring genetic diversity is of fundamental importance in evolutionary biology. The seabuckthorn carpenter moth (Holcocerus hippophaecolus Hua) is a native species throughout the north of China and is considered the main threat to seabuckthorn, Hippophae rhamnoides L. We assessed the influence of outbreaks, environmental factors and host species in shaping the genetic variation and structure of H. hippophaecolus by using Amplified Fragment Length Polymorphism (AFLP) markers. We rejected the hypothesis that outbreak-associated genetic divergence exist, as evidenced by genetic clusters containing a combination of populations from historical outbreak areas, as well as non-outbreak areas. Although a small number of markers (4 of 933 loci) were identified as candidates under selection in response to population densities. H. hippophaecolus also did not follow an isolation-by-distance pattern. We rejected the hypothesis that outbreak and drought events were driving the genetic structure of H. hippophaecolus. Rather, the genetic structure appears to be influenced by various confounding bio-geographical factors. There were detectable genetic differences between H. hippophaecolus occupying different host trees from within the same geographic location. Host-associated genetic divergence should be confirmed by further investigation

    Triangle Singularity as the Origin of the a1(1420)

    Get PDF
    The COMPASS Collaboration experiment recently discovered a new isovector resonancelike signal with axial-vector quantum numbers, the a(1)(1420), decaying to f(0)(980)(pi). With a mass too close to and a width smaller than the axial-vector ground state a(1)(1260), it was immediately interpreted as a new light exotic meson, similar to the X, Y, Z states in the hidden-charm sector. We show that a resonancelike signal fully matching the experimental data is produced by the decay of the a(1) (1260) resonance into K* (-> K pi) (K) over bar and subsequent rescattering through a triangle singularity into the coupled f(0)(980)p channel. The amplitude for this process is calculated using a new approach based on dispersion relations. The triangle-singularity model is fitted to the partial-wave data of the COMPASS experiment. Despite having fewer parameters, this fit shows a slightly better quality than the one using a resonance hypothesis and thus eliminates the need for an additional resonance in order to describe the data. We thereby demonstrate for the first time in the lightmeson sector that a resonancelike structure in the experimental data can be described by rescattering through a triangle singularity, providing evidence for a genuine three-body effect

    Multiplicities of charged kaons from deep-inelastic muon scattering off an isoscalar target

    Get PDF
    Precise measurements of charged-kaon multiplicities in deep inelastic scattering were performed. The results are presented in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the virtual-photon energy carried by the produced hadron. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6LiD target. They cover the kinematic domain View the MathML source in the photon virtuality, 0.0045 GeV/c2 in the invariant mass of the hadronic system. The results from the sum of the z -integrated K+ and K 12 multiplicities at high x point to a value of the non-strange quark fragmentation function larger than obtained by the earlier DSS fit

    Education and training for radiation scientists: radiation research program and American Society of Therapeutic Radiology and Oncology Workshop, Bethesda, Maryland, May 12-14, 2003.

    No full text
    Current and potential shortfalls in the number of radiation scientists stand in sharp contrast to the emerging scientific opportunities and the need for new knowledge to address issues of cancer survivorship and radiological and nuclear terrorism. In response to these challenges, workshops organized by the Radiation Research Program (RRP), National Cancer Institute (NCI) (Radiat. Res. 157, 204-223, 2002; Radiat. Res. 159, 812-834, 2003), and National Institute of Allergy and Infectious Diseases (NIAID) (Nature, 421, 787, 2003) have engaged experts from a range of federal agencies, academia and industry. This workshop, Education and Training for Radiation Scientists, addressed the need to establish a sustainable pool of expertise and talent for a wide range of activities and careers related to radiation biology, oncology and epidemiology. Although fundamental radiation chemistry and physics are also critical to radiation sciences, this workshop did not address workforce needs in these areas. The recommendations include: (1) Establish a National Council of Radiation Sciences to develop a strategy for increasing the number of radiation scientists. The strategy includes NIH training grants, interagency cooperation, interinstitutional collaboration among universities, and active involvement of all stakeholders. (2) Create new and expanded training programs with sustained funding. These may take the form of regional Centers of Excellence for Radiation Sciences. (3) Continue and broaden educational efforts of the American Society for Therapeutic Radiology and Oncology (ASTRO), the American Association for Cancer Research (AACR), the Radiological Society of North America (RSNA), and the Radiation Research Society (RRS). (4) Foster education and training in the radiation sciences for the range of career opportunities including radiation oncology, radiation biology, radiation epidemiology, radiation safety, health/government policy, and industrial research. (5) Educate other scientists and the general public on the quantitative, basic, molecular, translational and applied aspects of radiation sciences

    Effects of environmental variation and spatial distance on Bacteria, Archaea and viruses in sub-polar and arctic waters

    Get PDF
    We investigated the influence of environmental parameters and spatial distance on bacterial, archaeal and viral community composition from 13 sites along a 3200-km long voyage from Halifax to Kugluktuk (Canada) through the Labrador Sea, Baffin Bay and the Arctic Archipelago. Variation partitioning was used to disentangle the effects of environmental parameters, spatial distance and spatially correlated environmental parameters on prokaryotic and viral communities. Viral and prokaryotic community composition were related in the Labrador Sea, but were independent of each other in Baffin Bay and the Arctic Archipelago. In oceans, the dominant dispersal mechanism for prokaryotes and viruses is the movement of water masses, thus, dispersal for both groups is passive and similar. Nevertheless, spatial distance explained 7–19% of the variation in viral community composition in the Arctic Archipelago, but was not a significant predictor of bacterial or archaeal community composition in either sampling area, suggesting a decoupling of the processes regulating community composition within these taxonomic groups. According to the metacommunity theory, patterns in bacterial and archaeal community composition suggest a role for species sorting, while patterns of virus community composition are consistent with species sorting in the Labrador Sea and suggest a potential role of mass effects in the Arctic Archipelago. Given that, a specific prokaryotic taxon may be infected by multiple viruses with high reproductive potential, our results suggest that viral community composition was subject to a high turnover relative to prokaryotic community composition in the Arctic Archipelago
    corecore