17 research outputs found

    A phase II study of a 5T4 oncofoetal antigen tumour-targeted superantigen (ABR-214936) therapy in patients with advanced renal cell carcinoma

    Get PDF
    In a phase II study, 43 renal cell carcinoma patients were treated with individualised doses of ABR-214936; a fusion of a Fab recognising the antigen 5T4, and Staphylococcal enterotoxin A. Drug was given intravenously on 4 consecutive days, treatment was repeated 1 month later. Treatment was associated with moderate fever and nausea, but well tolerated. Of 40 evaluable patients, 28 had disease control at 2 months, and at 4 months, one patient showed partial response (PR) and 16 patients stable disease. Median survival, with minimum follow-up of 26 months was 19.7 months with 13 patients alive to date. Stratification by the Motzer's prognostic criteria highlights prolonged survival compared to published expectation. Patients receiving higher drug exposure had greater disease control and lived almost twice as long as expected, whereas the low-exposure patients survived as expected. Sustained interleukin-2 (IL-2) production after a repeated injection appears to be a biomarker for clinical effect, as the induced-IL-2 level on the day 2 of treatment correlated with survival. The high degree of disease control and the prolonged survival suggest that this treatment can be effective. These findings will be used in the trial design for the next generation of drug, with reduced antigenicity and toxicity

    Shape coexistence in the neutron-deficient lead region: A systematic study of lifetimes in the even-even 188200^{188-200}Hg with GRIFFIN

    Get PDF
    Lifetimes of 21+2^+_1 and 41+4^+_1 states, as well as some negative-parity and non-yrast states, in 188200^{188-200}Hg were measured using γγ\gamma-\gamma electronic fast timing techniques with the LaBr3_3(Ce) detector array of the GRIFFIN spectrometer. The excited states were populated in the ϵ/β+\epsilon/\beta^+-decay of Jπ=7+/2J^\pi =7^+/2^- 188200^{188-200}Tl produced at the TRIUMF-ISAC facility. The deduced B(E2) values are compared to different interacting boson model predictions. The precision achieved in this work over previous ones allows for a meaningful comparison with the different theoretical models of these transitional Hg isotopes, which confirms the onset of state mixing in 190^{190}Hg

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    This is the final version. Available on open access from the American Association for the Advancement of Science via the DOI in this recordData and materials availability: Processed data and code used in the analysis are accessible from the Zenodo Repository: 10.5281/zenodo.6885455Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.Bertarelli FoundationResearch EnglandMoore FoundationPackard FoundationInstituto Politecnico NacionalDarwin InitiativeGeorgia AquariumRolex Awards for EnterpriseWhitley Fund for Natur

    The Upper and Lower Visual Field of Man: Electrophysiological and Functional Differences

    Get PDF

    4pAB4. Strategies for weighting exposure in the development of acoustic criteria for marine mammals (vol 118, pg 2019, 2005)

    No full text
    The Noise Exposure Criteria Group has been developing noise exposure criteria for marine mammals. Although the primary focus of the effort is development of criteria to prevent injury, the Group has also emphasized the development of exposure metrics that can be used to predict injury with accuracy and precision. Noise exposure metrics for humans have proven to be more effective when they account for psychophysical properties of the auditory system, particularly loudness perception. Usually noise is filtered using the A‐weighting function, an idealized curve based on the human 40‐phon equal loudness function. However, there are no empirical studies to show whether a comparable procedure for animals will improve predictions. The Noise Exposure Criteria Group panel has proposed to weight noise data by functions that admit sound throughout the frequency range of hearing in five marine mammal groupings—low frequency cetaceans (mysticetes), midfrequency cetaceans, high‐frequency cetaceans, pinnipeds in air, and pinnipeds in water. The algorithm for the functions depends only on the upper and lower frequency limits of hearing and does not differentially weight frequencies based on sensitivity within the range. This procedure is considered conservative. However, if the human case may be taken as a model, it is not likely to produce precise predictions. Empirical data are essential to finding better estimators of exposure

    4pAB4. Strategies for weighting exposure in the development of acoustic criteria for marine mammals (vol 118, pg 2019, 2005)

    No full text
    The Noise Exposure Criteria Group has been developing noise exposure criteria for marine mammals. Although the primary focus of the effort is development of criteria to prevent injury, the Group has also emphasized the development of exposure metrics that can be used to predict injury with accuracy and precision. Noise exposure metrics for humans have proven to be more effective when they account for psychophysical properties of the auditory system, particularly loudness perception. Usually noise is filtered using the A‐weighting function, an idealized curve based on the human 40‐phon equal loudness function. However, there are no empirical studies to show whether a comparable procedure for animals will improve predictions. The Noise Exposure Criteria Group panel has proposed to weight noise data by functions that admit sound throughout the frequency range of hearing in five marine mammal groupings—low frequency cetaceans (mysticetes), midfrequency cetaceans, high‐frequency cetaceans, pinnipeds in air, and pinnipeds in water. The algorithm for the functions depends only on the upper and lower frequency limits of hearing and does not differentially weight frequencies based on sensitivity within the range. This procedure is considered conservative. However, if the human case may be taken as a model, it is not likely to produce precise predictions. Empirical data are essential to finding better estimators of exposure
    corecore