1,441 research outputs found

    Ten Simple Rules for Getting Help from Online Scientific Communities

    Get PDF
    The increasing complexity of research requires scientists to work at the intersection of multiple fields and to face problems for which their formal education has not prepared them. For example, biologists with no or little background in programming are now often using complex scripts to handle the results from their experiments; vice versa, programmers wishing to enter the world of bioinformatics must know about biochemistry, genetics, and other fields. In this context, communication tools such as mailing lists, web forums, and online communities acquire increasing importance. These tools permit scientists to quickly contact people skilled in a specialized field. A question posed properly to the right online scientific community can help in solving difficult problems, often faster than screening literature or writing to publication authors. The growth of active online scientific communities, such as those listed in Table S1, demonstrates how these tools are becoming an important source of support for an increasing number of researchers. Nevertheless, making proper use of these resources is not easy. Adhering to the social norms of World Wide Web communication—loosely termed “netiquette”—is both important and non-trivial. In this article, we take inspiration from our experience on Internet-shared scientific knowledge, and from similar documents such as “Asking the Questions the Smart Way” and “Getting Answers”, to provide guidelines and suggestions on how to use online communities to solve scientific problems

    Distractor Inhibition Predicts Individual Differences in the Attentional Blink

    Get PDF
    Background: The attentional blink (AB) refers to humans' impaired ability to detect the second of two targets (T2) in a rapid serial visual presentation (RSVP) stream of distractors if it appears within 200-600 ms of the first target (T1). Here we examined whether humans' ability to inhibit distractors in the RSVP stream is a key determinant of individual differences in T1 performance and AB magnitude

    Temporal perception deficits in schizophrenia: integration is the problem, not deployment of attentions

    Get PDF
    Patients with schizophrenia are known to have impairments in sensory processing. In order to understand the specific temporal perception deficits of schizophrenia, we investigated and determined to what extent impairments in temporal integration can be dissociated from attention deployment using Attentional Blink (AB). Our findings showed that there was no evident deficit in the deployment of attention in patients with schizophrenia. However, patients showed an increased temporal integration deficit within a hundred-millisecond timescale. The degree of such integration dysfunction was correlated with the clinical manifestations of schizophrenia. There was no difference between individuals with/without schizotypal personality disorder in temporal integration. Differently from previous studies using the AB, we did not find a significant impairment in deployment of attention in schizophrenia. Instead, we used both theoretical and empirical approaches to show that previous findings (using the suppression ratio to correct for the baseline difference) produced a systematic exaggeration of the attention deficits. Instead, we modulated the perceptual difficulty of the task to bring the baseline levels of target detection between the groups into closer alignment. We found that the integration dysfunction rather than deployment of attention is clinically relevant, and thus should be an additional focus of research in schizophrenia

    Priming the Semantic Neighbourhood during the Attentional Blink

    Get PDF
    Background: When two targets are presented in close temporal proximity amongst a rapid serial visual stream of distractors, a period of disrupted attention and attenuated awareness lasting 200–500 ms follows identification of the first target (T1). This phenomenon is known as the ‘‘attentional blink’ ’ (AB) and is generally attributed to a failure to consolidate information in visual short-term memory due to depleted or disrupted attentional resources. Previous research has shown that items presented during the AB that fail to reach conscious awareness are still processed to relatively high levels, including the level of meaning. For example, missed word stimuli have been shown to prime later targets that are closely associated words. Although these findings have been interpreted as evidence for semantic processing during the AB, closely associated words (e.g., day-night) may also rely on specific, well-worn, lexical associative links which enhance attention to the relevant target. Methodology/Principal Findings: We used a measure of semantic distance to create prime-target pairs that are conceptually close, but have low word associations (e.g., wagon and van) and investigated priming from a distractor stimulus presented during the AB to a subsequent target (T2). The stimuli were words (concrete nouns) in Experiment 1 and the corresponding pictures of objects in Experiment 2. In both experiments, report of T2 was facilitated when this item was preceded by a semantically-related distractor

    Evidence in cortical folding patterns for prenatal predispositions to hallucinations in schizophrenia.

    Get PDF
    All perception is a construction of the brain from sensory input. Our first perceptions begin during gestation, making fetal brain development fundamental to how we experience a diverse world. Hallucinations are percepts without origin in physical reality that occur in health and disease. Despite longstanding research on the brain structures supporting hallucinations and on perinatal contributions to the pathophysiology of schizophrenia, what links these two distinct lines of research remains unclear. Sulcal patterns derived from structural magnetic resonance (MR) images can provide a proxy in adulthood for early brain development. We studied two independent datasets of patients with schizophrenia who underwent clinical assessment and 3T MR imaging from the United Kingdom and Shanghai, China (n = 181 combined) and 63 healthy controls from Shanghai. Participants were stratified into those with (n = 79 UK; n = 22 Shanghai) and without (n = 43 UK; n = 37 Shanghai) hallucinations from the PANSS P3 scores for hallucinatory behaviour. We quantified the length, depth, and asymmetry indices of the paracingulate and superior temporal sulci (PCS, STS), which have previously been associated with hallucinations in schizophrenia, and constructed cortical folding covariance matrices organized by large-scale functional networks. In both ethnic groups, we demonstrated a significantly shorter left PCS in patients with hallucinations compared to those without, and to healthy controls. Reduced PCS length and STS depth corresponded to focal deviations in their geometry and to significantly increased covariance within and between areas of the salience and auditory networks. The discovery of neurodevelopmental alterations contributing to hallucinations establishes testable models for these enigmatic, sometimes highly distressing, perceptions and provides mechanistic insight into the pathological consequences of prenatal origins

    Planetary Dynamics and Habitable Planet Formation In Binary Star Systems

    Full text link
    Whether binaries can harbor potentially habitable planets depends on several factors including the physical properties and the orbital characteristics of the binary system. While the former determines the location of the habitable zone (HZ), the latter affects the dynamics of the material from which terrestrial planets are formed (i.e., planetesimals and planetary embryos), and drives the final architecture of the planets assembly. In order for a habitable planet to form in a binary star system, these two factors have to work in harmony. That is, the orbital dynamics of the two stars and their interactions with the planet-forming material have to allow terrestrial planet formation in the habitable zone, and ensure that the orbit of a potentially habitable planet will be stable for long times. We have organized this chapter with the same order in mind. We begin by presenting a general discussion on the motion of planets in binary stars and their stability. We then discuss the stability of terrestrial planets, and the formation of potentially habitable planets in a binary-planetary system.Comment: 56 pages, 29 figures, chapter to appear in the book: Planets in Binary Star Systems (Ed. N. Haghighipour, Springer publishing company

    Quick Minds Slowed Down: Effects of Rotation and Stimulus Category on the Attentional Blink

    Get PDF
    BACKGROUND: Most people show a remarkable deficit to report the second of two targets when presented in close temporal succession, reflecting an attentional restriction known as the 'attentional blink' (AB). However, there are large individual differences in the magnitude of the effect, with some people showing no such attentional restrictions. METHODOLOGY/PRINCIPAL FINDINGS: Here we present behavioral and electrophysiological evidence suggesting that these 'non-blinkers' can use alphanumeric category information to select targets at an early processing stage. When such information was unavailable and target selection could only be based on information that is processed relatively late (rotation), even non-blinkers show a substantial AB. Electrophysiologically, in non-blinkers this resulted in enhanced distractor-related prefrontal brain activity, as well as delayed target-related occipito-parietal activity (P3). CONCLUSION/SIGNIFICANCE: These findings shed new light on possible strategic mechanisms that may underlie individual differences in AB magnitude and provide intriguing clues as to how temporal restrictions as reflected in the AB can be overcome

    Reliability of two goniometric methods of measuring active inversion and eversion range of motion at the ankle

    Get PDF
    BACKGROUND: Active inversion and eversion ankle range of motion (ROM) is widely used to evaluate treatment effect, however the error associated with the available measurement protocols is unknown. This study aimed to establish the reliability of goniometry as used in clinical practice. METHODS: 30 subjects (60 ankles) with a wide variety of ankle conditions participated in this study. Three observers, with different skill levels, measured active inversion and eversion ankle ROM three times on each of two days. Measurements were performed with subjects positioned (a) sitting and (b) prone. Intra-class correlation coefficients (ICC([2,1])) were calculated to determine intra- and inter-observer reliability. RESULTS: Within session intra-observer reliability ranged from ICC([2,1] )0.82 to 0.96 and between session intra-observer reliability ranged from ICC([2,1] )0.42 to 0.80. Reliability was similar for the sitting and the prone positions, however, between sessions, inversion measurements were more reliable than eversion measurements. Within session inter-observer measurements in sitting were more reliable than in prone and inversion measurements were more reliable than eversion measurements. CONCLUSION: Our findings show that ankle inversion and eversion ROM can be measured with high to very high reliability by the same observer within sessions and with low to moderate reliability by different observers within a session. The reliability of measures made by the same observer between sessions varies depending on the direction, being low to moderate for eversion measurements and moderate to high for inversion measurements in both positions

    A Quick Mind with Letters Can Be a Slow Mind with Natural Scenes: Individual Differences in Attentional Selection

    Get PDF
    Background Most people show a remarkable deficit in reporting the second of two targets (T2) when presented 200–500 ms after the first (T1), reflecting an ‘attentional blink’ (AB). However, there are large individual differences in the magnitude of the effect, with some people, referred to as ‘non-blinkers’, showing no such attentional restrictions. Methodology/Principal Findings Here we replicate these individual differences in a task requiring identification of two letters amongst digits, and show that the observed differences in T2 performance cannot be attributed to individual differences in T1 performance. In a second experiment, the generality of the non-blinkers' superior performance was tested using a task containing novel pictures rather than alphanumeric stimuli. A substantial AB was obtained in non-blinkers that was equivalent to that of ‘blinkers’. Conclusion/Significance The results suggest that non-blinkers employ an efficient target selection strategy that relies on well-learned alphabetic and numeric category sets.University of Groningen. Research School Behavioural and Cognitive Neuroscience
    corecore