17 research outputs found

    Effects of adenosine A2A receptor activation and alanyl-glutamine in Clostridium difficile toxin-induced ileitis in rabbits and cecitis in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Severe <it>Clostridium difficile </it>toxin-induced enteritis is characterized by exuberant intestinal tissue inflammation, epithelial disruption and diarrhea. Adenosine, through its action on the adenosine A<sub>2A </sub>receptor, prevents neutrophillic adhesion and oxidative burst and inhibits inflammatory cytokine production. Alanyl-glutamine enhances intestinal mucosal repair and decreases apoptosis of enterocytes. This study investigates the protection from enteritis by combination therapy with ATL 370, an adenosine A<sub>2A </sub>receptor agonist, and alanyl-glutamine in a rabbit and murine intestinal loop models of <it>C. difficile </it>toxin A-induced epithelial injury.</p> <p>Methods</p> <p>Toxin A with or without alanyl-glutamine was administered intraluminally to rabbit ileal or murine cecal loops. Animals were also given either PBS or ATL 370 parenterally. Ileal tissues were examined for secretion, histopathology, apoptosis, Cxcl1/KC and IL-10.</p> <p>Results</p> <p>ATL 370 decreased ileal secretion and histopathologic changes in loops treated with Toxin A. These effects were reversed by the A<sub>2A </sub>receptor antagonist, SCH 58261, in a dose-dependent manner. The combination of ATL 370 and alanyl-glutamine significantly further decreased ileal secretion, mucosal injury and apoptosis more than loops treated with either drug alone. ATL 370 and alanyl-glutamine also decreased intestinal tissue KC and IL-10.</p> <p>Conclusions</p> <p>Combination therapy with an adenosine A<sub>2A </sub>receptor agonist and alanyl-glutamine is effective in reversing <it>C. difficile </it>toxin A-induced epithelial injury, inflammation, secretion and apoptosis in animals and has therapeutic potential for the management of <it>C. difficile </it>infection.</p

    Evidence for Divergent Evolution of Growth Temperature Preference in Sympatric Saccharomyces Species

    Get PDF
    The genus Saccharomyces currently includes eight species in addition to the model yeast Saccharomyces cerevisiae, most of which can be consistently isolated from tree bark and soil. We recently found sympatric pairs of Saccharomyces species, composed of one cryotolerant and one thermotolerant species in oak bark samples of various geographic origins. In order to contribute to explain the occurrence in sympatry of Saccharomyces species, we screened Saccharomyces genomic data for protein divergence that might be correlated to distinct growth temperature preferences of the species, using the dN/dS ratio as a measure of protein evolution rates and pair-wise species comparisons. In addition to proteins previously implicated in growth at suboptimal temperatures, we found that glycolytic enzymes were among the proteins exhibiting higher than expected divergence when one cryotolerant and one thermotolerant species are compared. By measuring glycolytic fluxes and glycolytic enzymatic activities in different species and at different temperatures, we subsequently show that the unusual divergence of glycolytic genes may be related to divergent evolution of the glycolytic pathway aligning its performance to the growth temperature profiles of the different species. In general, our results support the view that growth temperature preference is a trait that may have undergone divergent selection in the course of ecological speciation in Saccharomyces

    Winemaking and bioprocesses strongly shaped the genetic diversity of the ubiquitous yeast Torulaspora delbrueckii

    No full text
    The yeast Torulaspora delbrueckii is associated with several human activities including oenology, bakery, distillery, dairy industry, etc. In addition to its biotechnological applications, T. delbrueckii is frequently isolated in natural environments (plant, soil, insect). T. delbrueckii is thus a remarkable ubiquitous yeast species with both wild and anthropic habitats, and appears to be a perfect yeast model to search for evidence of human domestication. For that purpose, we developed eight microsatellite markers that were used for the genotyping of 110 strains from various substrates and geographical origins. Microsatellite analysis showed four genetic clusters: two groups contained most nature strains from Old World and Americas respectively, and two clusters were associated with winemaking and other bioprocesses. Analysis of molecular variance (AMOVA) confirmed that human activities significantly shaped the genetic variability of T. delbrueckii species. Natural isolates are differentiated on the basis of geographical localisation, as expected for wild population. The domestication of T. delbrueckii probably dates back to the Roman Empire for winemaking (~1900 years ago), and to the Neolithic era for bioprocesses (~4000 years ago). Microsatellite analysis also provided valuable data regarding the life-cycle of the species, suggesting a mostly diploid homothallic life. In addition to population genetics and ecological studies, the microsatellite tool will be particularly useful for further biotechnological development of T. delbrueckii strains for winemaking and other bioprocesses

    Youth Education-Refreshment center in Chalkis

    No full text
    Το κέντρο ανήκει στον δήμο και λειτουργεί ως χώρος συγκέντρωσης και αναψυχής ενώ ταυτόχρονα παρέχονται μαθήματα πληροφορικήςThe center belongs to the municipality and is used as a place of gathering and refreshment, while at the same time informatics lessons are organizedΑικατερίνη Κ. Μπάνο
    corecore