771 research outputs found

    Using Moored Arrays and Hyperspectral Aerial Imagery to Develop Nutrient Criteria for New Hampshire\u27s Estuaries

    Get PDF
    Increasing nitrogen concentrations and declining eelgrass beds in Great Bay, NH are clear indicators of impending problems for the state’s estuaries. A workgroup established in 2005 by the NH Department of Environmental Services and the NH Estuaries Project (NHEP) adopted eelgrass survival as the water quality target for nutrient criteria development for NH’s estuaries. In 2007, the NHEP received a grant from the U.S. Environmental Protection Agency to collect water quality information including that from moored sensors and hyper-spectral imagery data of the Great Bay Estuary. Data from the Great Bay Coastal Buoy, part of the regional Integrated Ocean Observing System (IOOS), were used to derive a multivariate model of water clarity with phytoplankton, Colored Dissolved Organic Matter (CDOM), and non-algal particles. Non-algal particles include both inorganic and organic matter. Most of the temporal variability in the diffuse attenuation coefficient of Photosynthetically Available Radiation (PAR) was associated with non-algal particles. However, on a mean daily basis non-algal particles and CDOM contributed a similar fraction (~30 %) to the attenuation of light. The contribution of phytoplankton was about a third of the other two optically important constituents. CDOM concentrations varied with salinity and magnitude of riverine inputs demonstrating its terrestrial origin. Non-algal particle concentration also varied with river flow but also wind driven resuspension. Twelve of the NHEP estuarine assessment zones were observed with the hyperspectral aerial imagery on August 29 and October 17. A concurrent in situ effort included buoy measurements, continuous along-track sampling, discrete water grab samples, and vertical profiles of light attenuation. PAR effective attenuation coefficients retrieved from deep water regions in the imagery agreed well with in-situ observations. Water clarity was lower and optically important constituent concentrations were higher in the tributaries. Eelgrass survival depth, estimated as the depth at which 22% of surface light was available, ranged from less than half a meter to over two meters. The best water clarity was found in the Great Bay (GB), Little Bay (LB), and Lower Piscataqua River (LPR) assessment zones. Absence of eelgrass from these zones would indicate controlling factors other than water clarity

    Are changes in breeding habitat responsible for recent population changes of long-distance migrant birds?

    Get PDF
    Capsule: The direction and magnitude of changes in structure of UK woodlands since the 1980s, are inconsistent with them playing a causative role in the declines of four migrant bird species in upland oak woods. / Aims: To investigate whether changes in woodland structure were a possible cause of population changes of four Afro-Palearctic migrants (Wood Warbler Phylloscopus sibilatrix, Tree Pipit Anthus trivialis, Pied Flycatcher Ficedula hypoleuca and Common Redstart Phoenicurus phoenicurus) in the upland oakwoods of western and northern Britain. / Methods: Bird population estimates and measures of woodland structure were recorded in two time periods 1982–85 and 2003–04 across six regions of the UK. We modelled the effect of habitat change and initial habitat state on population changes between the two time periods. The predicted effects of habitat change on populations were then compared with observed population changes across the different regions. / Results: All four species underwent population declines; there were also significant increases in ground cover and understorey cover. The number of birds in 2003–04 was influenced by habitat structure at this time in addition to showing regional differences. Change in bird numbers varied between regions and was affected by both the initial habitat state and change in habitat structure, with regional variation in the effect of habitat change. There was however no relationship between the predicted effect of change in habitat structure on population size and observed regional population changes. / Conclusions: Changes in woodland structure are unlikely to be the main driver of population change in these four migrant bird species, and large-scale factors affecting demographics in other parts of their breeding range or in their wintering areas are likely reasons for local population declines

    Disaturated-phosphatidylcholine and Surfactant protein-B turnover in human acute lung injury and in control patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with Adult Respiratory Distress Syndrome (ARDS) and Acute Lung Injury (ALI) have low concentrations of disaturated-phosphatidylcholine and surfactant protein-B in bronchoalveolar lavage fluid. No information is available on their turnover.</p> <p>Objectives</p> <p>To analyze disaturated-phosphatidylcholine and surfactant protein-B turnover in patients with ARDS/ALI and in human adults with normal lungs (controls).</p> <p>Methods</p> <p><sup>2</sup>H<sub>2</sub>O as precursor of disaturated-phosphatidylcholine-palmitate and 1<sup>13</sup>C-Leucine as precursor of surfactant protein-B were administered intravenously to 12 patients with ARDS/ALI and to 8 controls. Disaturated-phosphatidylcholine and surfactant protein-B were isolated from serial tracheal aspirates, and their fractional synthetic rate was derived from the <sup>2</sup>H and <sup>13</sup>C enrichment curves, obtained by gas chromatography mass spectrometry. Disaturated-phosphatidylcholine, surfactant protein-B, and protein concentrations in tracheal aspirates were also measured.</p> <p>Results</p> <p>1) Surfactant protein-B turned over at faster rate than disaturated-phosphatidylcholine both in ARDS/ALI patients and in controls. 2) In patients with ARDS/ALI the fractional synthesis rate of disaturated-phosphatidylcholine was 3.1 times higher than in controls (p < 0.01), while the fractional synthesis rate of surfactant protein-B was not different. 3) In ARDS/ALI patients the concentrations of disaturated-phosphatidylcholine and surfactant protein-B in tracheal aspirates were markedly and significantly reduced (17% and 40% of the control values respectively).</p> <p>Conclusions</p> <p>1) Disaturated-phosphatidylcholine and surfactant protein-B have a different turnover both in healthy and diseased lungs. 2) In ARDS/ALI the synthesis of these two surfactant components may be differently regulated.</p

    EquiFACS: the Equine Facial Action Coding System

    Get PDF
    Although previous studies of horses have investigated their facial expressions in specific contexts, e.g. pain, until now there has been no methodology available that documents all the possible facial movements of the horse and provides a way to record all potential facial configurations. This is essential for an objective description of horse facial expressions across a range of contexts that reflect different emotional states. Facial Action Coding Systems (FACS) provide a systematic methodology of identifying and coding facial expressions on the basis of underlying facial musculature and muscle movement. FACS are anatomically based and document all possible facial movements rather than a configuration of movements associated with a particular situation. Consequently, FACS can be applied as a tool for a wide range of research questions. We developed FACS for the domestic horse (Equus caballus) through anatomical investigation of the underlying musculature and subsequent analysis of naturally occurring behaviour captured on high quality video. Discrete facial movements were identified and described in terms of the underlying muscle contractions, in correspondence with previous FACS systems. The reliability of others to be able to learn this system (EquiFACS) and consistently code behavioural sequences was high—and this included people with no previous experience of horses. A wide range of facial movements were identified, including many that are also seen in primates and other domestic animals (dogs and cats). EquiFACS provides a method that can now be used to document the facial movements associated with different social contexts and thus to address questions relevant to understanding social cognition and comparative psychology, as well as informing current veterinary and animal welfare practices

    Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes

    Get PDF
    Copyright: © 2010 Stimpson et al.Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extrachromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.This work was supported by the Tumorzentrum Heidelberg/Mannheim grant (D.10026941)and by March of Dimes Research Foundation grant #1-FY06-377 and NIH R01 GM069514

    3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell

    Get PDF
    The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes

    Evolution of hindlimb muscle anatomy across the tetrapod water-to-land transition, including comparisons with forelimb anatomy

    Get PDF
    Tetrapod limbs are a key innovation implicated in the evolutionary success of the clade. Although musculoskeletal evolution of the pectoral appendage across the fins‐to‐limbs transition is fairly well documented, that of the pelvic appendage is much less so. The skeletal elements of the pelvic appendage in some tetrapodomorph fish and the earliest tetrapods are relatively smaller and/or qualitatively less similar to those of crown tetrapods than those of the pectoral appendage. However, comparative and developmental works have suggested that the musculature of the tetrapod forelimb and hindlimb was initially very similar, constituting a “similarity bottleneck” at the fins‐to‐limbs transition. Here we used extant phylogenetic bracketing and phylogenetic character optimization to reconstruct pelvic appendicular muscle anatomy in several key taxa spanning the fins‐to‐limbs and water‐to‐land transitions. Our results support the hypothesis that transformation of the pelvic appendages from fin‐like to limb‐like lagged behind that of the pectoral appendages. Compared to similar reconstructions of the pectoral appendages, the pelvic appendages of the earliest tetrapods had fewer muscles, particularly in the distal limb (shank). In addition, our results suggest that the first tetrapods had a greater number of muscle‐muscle topological correspondences between the pectoral and pelvic appendages than tetrapodomorph fish had. However, ancestral crown‐group tetrapods appear to have had an even greater number of similar muscles (both in terms of number and as a percentage of the total number of muscles), indicating that the main topological similarity bottleneck between the paired appendages may have occurred at the origin of the tetrapod crown group

    Genome size evolution at the speciation level: The cryptic species complex Brachionus plicatilis (Rotifera)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer <it>Brachionus plicatilis</it>, a cryptic species complex consisting of at least 14 closely related species.</p> <p>Results</p> <p>We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg). Most of this variation (67%) could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32%) at lower taxonomic levels - within and among genealogical species - and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called <it>B</it>. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence.</p> <p>Conclusions</p> <p>Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex.</p

    Assessment of heterologous butyrate and butanol pathway activity by measurement of intracellular pathway intermediates in recombinant Escherichia coli

    Get PDF
    In clostridia, n-butanol production from carbohydrates at yields of up to 76% of the theoretical maximum and at titers of up to 13 g/L has been reported. However, in Escherichia coli, several groups have reported butyric acid or butanol production from recombinant expression of clostridial genes, at much lower titers and yields. To pinpoint deficient steps in the recombinant pathway, we developed an analytical procedure for the determination of intracellular pools of key pathway intermediates and applied the technique to the analysis of three sets of E. coli strains expressing various combinations of butyrate biosynthesis genes. Low expression levels of the hbd-encoded S-3-hydroxybutyryl-CoA dehydrogenase were insufficient to convert acetyl-CoA to 3-hydroxybutyryl-CoA, indicating that hbd was a rate-limiting step in the production of butyryl-CoA. Increasing hbd expression alleviated this bottleneck, but in resulting strains, our pool size measurements and thermodynamic analysis showed that the reaction step catalyzed by the bcd-encoded butyryl-CoA dehydrogenase was rate-limiting. E. coli strains expressing both hbd and ptb-buk produced crotonic acid as a byproduct, but this byproduct was not observed with expression of related genes from non-clostridial organisms. Our thermodynamic interpretation of pool size measurements is applicable to the analysis of other metabolic pathways
    corecore