64 research outputs found
Surgery, with or without tamoxifen, vs tamoxifen alone for older women with operable breast cancer: Cochrane review
The published literature comparing surgery, with or without adjuvant endocrine therapy, with endocrine therapy alone in older women with operable breast cancer was systematically reviewed.The design used is Cochrane review. Randomised controlled trials retrieved from the Cochrane Breast Cancer Group Specialised Register on 29 June 2005. Eligible studies recruited women aged 70 years or over with operable breast cancer, fit for surgery under general anaesthia. The studies compared surgery (either mastectomy or wide local excision, with or without endocrine therapy) to endocrine therapy alone. Primary outcomes were overall survival (OS) and progression-free survival (PFS). Double data extraction and quality assessment were undertaken. Seven eligible trials were identified of which six had published time-to-event data. The quality of the allocation concealment was adequate in three studies and unclear in the remainder. In each case the endocrine therapy used was tamoxifen. When surgery alone was compared to endocrine therapy alone, there was no significant difference in OS (hazard ratio (HR) 0.98, 95% confidence interval (CI) 0.74–1.30, P=0.9), but a significant difference in PFS (HR 0.55, 95% CI 0.39–0.77, P=0.0006). When surgery with adjuvant endocrine therapy was compared to endocrine therapy alone, there was no significant difference in OS (HR 0.86, 95% CI 0.73–1.00, P=0.06), but a significant difference in PFS (HR 0.65 (95% CI 0.53–0.81, P=0.0001) for surgery plus endocrine therapy vs primary endocrine. The regimens have different side effect profiles with one study suggesting increased psychosocial morbidity at 3 months in the surgical arm, which resolves by 2 years. Primary endocrine therapy with tamoxifen is associated with inferior local disease control but non-inferior survival to surgery for breast cancer in older women. Trials are needed to evaluate appropriate selection criteria for its use in terms of patient co-morbidity and quality of life. Trials are needed to evaluate the clinical effectiveness of aromatase inhibitors as primary therapy for this population
Graphene photodetectors for high-speed optical communications
While silicon has dominated solid-state electronics for more than four
decades, a variety of new materials have been introduced into photonics to
expand the accessible wavelength range and to improve the performance of
photonic devices. For example, gallium-nitride based materials enable the light
emission at blue and ultraviolet wavelengths, and high index contrast
silicon-on-insulator facilitates the realization of ultra dense and CMOS
compatible photonic devices. Here, we report the first deployment of graphene,
a two-dimensional carbon material, as the photo-detection element in a 10
Gbits/s optical data link. In this interdigitated metal-graphene-metal
photodetector, an asymmetric metallization scheme is adopted to break the
mirror symmetry of the built-in electric-field profile in conventional graphene
field-effect-transistor channels, allowing for efficient photo-detection within
the entire area of light illumination. A maximum external photo-responsivity of
6.1 mA/W is achieved at 1.55 {\mu}m wavelength, a very impressive value given
that the material is below one nanometer in thickness. Moreover, owing to the
unique band structure and exceptional electronic properties of graphene, high
speed photodetectors with an ultra-wide operational wavelength range at least
from 300 nm to 6 {\mu}m can be realized using this fascinating material.Comment: 20 pages, 3 figure
Quark helicity distributions in the nucleon for up, down, and strange quarks from semi--inclusive deep--inelastic scattering
Polarized deep--inelastic scattering data on longitudinally polarized
hydrogen and deuterium targets have been used to determine double spin
asymmetries of cross sections. Inclusive and semi--inclusive asymmetries for
the production of positive and negative pions from hydrogen were obtained in a
re--analysis of previously published data. Inclusive and semi--inclusive
asymmetries for the production of negative and positive pions and kaons were
measured on a polarized deuterium target. The separate helicity densities for
the up and down quarks and the anti--up, anti--down, and strange sea quarks
were computed from these asymmetries in a ``leading order'' QCD analysis. The
polarization of the up--quark is positive and that of the down--quark is
negative. All extracted sea quark polarizations are consistent with zero, and
the light quark sea helicity densities are flavor symmetric within the
experimental uncertainties. First and second moments of the extracted quark
helicity densities in the measured range are consistent with fits of inclusive
data
Evidence for a narrow |S|=1 baryon state at a mass of 1528 MeV in quasi-real photoproduction
Evidence for a narrow baryon state is found in quasi-real photoproduction on
a deuterium target through the decay channel p K^0_S --> p pi^+ pi^-. A peak is
observed in the p K^0_S invariant mass spectrum at 1528 +/- 2.6 (stat) +/-2.1
(syst) MeV. Depending on the background model,the naive statistical
significance of the peak is 4--6 standard deviations and its width may be
somewhat larger than the experimental resolution of sigma=4.3 -- 6.2 MeV. This
state may be interpreted as the predicted S=+1 exotic Theta^{+}(uuddbar(s))
pentaquark baryon. No signal for an hypothetical Theta^{++} baryon was observed
in the pK^+ invariant mass distribution. The absence of such a signal indicates
that an isotensor Theta is excluded and an isovector Theta is unlikely.Comment: 8 pages, 4 figure
Properties of Graphene: A Theoretical Perspective
In this review, we provide an in-depth description of the physics of
monolayer and bilayer graphene from a theorist's perspective. We discuss the
physical properties of graphene in an external magnetic field, reflecting the
chiral nature of the quasiparticles near the Dirac point with a Landau level at
zero energy. We address the unique integer quantum Hall effects, the role of
electron correlations, and the recent observation of the fractional quantum
Hall effect in the monolayer graphene. The quantum Hall effect in bilayer
graphene is fundamentally different from that of a monolayer, reflecting the
unique band structure of this system. The theory of transport in the absence of
an external magnetic field is discussed in detail, along with the role of
disorder studied in various theoretical models. We highlight the differences
and similarities between monolayer and bilayer graphene, and focus on
thermodynamic properties such as the compressibility, the plasmon spectra, the
weak localization correction, quantum Hall effect, and optical properties.
Confinement of electrons in graphene is nontrivial due to Klein tunneling. We
review various theoretical and experimental studies of quantum confined
structures made from graphene. The band structure of graphene nanoribbons and
the role of the sublattice symmetry, edge geometry and the size of the
nanoribbon on the electronic and magnetic properties are very active areas of
research, and a detailed review of these topics is presented. Also, the effects
of substrate interactions, adsorbed atoms, lattice defects and doping on the
band structure of finite-sized graphene systems are discussed. We also include
a brief description of graphane -- gapped material obtained from graphene by
attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
Advances in structure elucidation of small molecules using mass spectrometry
The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules
Recommended from our members
Measurements of atmospheric electricity aloft
Measurements of the electrical characteristics of the atmosphere above the surface have been made for over 200 years, from a variety of different platforms, including kites, balloons, rockets and aircraft. From these measurements, a great deal of information about the electrical characteristics of the atmosphere has been gained, assisting our understanding of the global atmospheric electric circuit, thunderstorm electrification and lightning generation mechanisms, discovery of transient luminous events above thunderstorms, and many other electrical phenomena. This paper surveys the history of atmospheric electrical measurements aloft, from the earliest manned balloon ascents to current day observations with free balloons and aircraft. Measurements of atmospheric electrical parameters in a range of meteorological conditions are described, including clear air conditions, polluted conditions, non-thunderstorm clouds, and thunderstorm clouds, spanning a range of atmospheric conditions, from fair weather, to the most electrically active
Multi-omic analyses of extensively decayed \u3cem\u3ePinus contorta\u3c/em\u3e reveal expression of diverse array of lignocellulose degrading enzymes
Fungi play a key role cycling nutrients in forest ecosystems, but the mechanisms remain uncertain. To clarify the enzymatic processes involved in wood decomposition, the metatranscriptomics and metaproteomics of extensively decayed lodgepole pine were examined by RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively. Following de novo metatranscriptome assembly, 52,011 contigs were searched for functional domains and homology to database entries. Contigs similar to basidiomycete transcripts dominated, and many of these were most closely related to ligninolytic white rot fungi or cellulolytic brown rot fungi. A diverse array of carbohydrate-active enzymes (CAZymes) representing a total of 132 families or subfamilies were identified. Among these were 672 glycoside hydrolases, including highly expressed cellulases or hemicellulases. The CAZymes also included 162 predicted redox enzymes classified within auxiliary activity (AA) families. Eighteen of these were manganese peroxidases, which are key components of ligninolytic white rot fungi. The expression of other redox enzymes supported the working of hydroquinone reduction cycles capable of generating reactive hydroxyl radicals. These have been implicated as diffusible oxidants responsible for cellulose depolymerization by brown rot fungi. Thus, enzyme diversity and the coexistence of brown and white rot fungi suggest complex interactions of fungal species and degradative strategies during the decay of lodgepole pine
Recommended from our members
Exposing novel quark and gluon effects in nuclei
The fundamental theory of the strong interaction-quantum chromodynamics (QCD) - provides the foundational framework with which to describe and understand the key properties of atomic nuclei. A deep understanding of the explicit role of quarks and gluons in nuclei remains elusive however, as these effects have thus far been well-disguised by confinement effects in QCD which are encapsulated by a successful description in terms of effective hadronic degrees of freedom. The observation of the EMC effect has provided an enduring indication for explicit QCD effects in nuclei, and points to the medium modification of the bound protons and neutrons in the nuclear medium. Understanding the EMC effect is a major challenge for modern nuclear physics, and several key questions remain, such as understanding its flavor, spin, and momentum dependence. This manuscript provides a contemporary snapshot of our understanding of the role of QCD in nuclei and outlines possible pathways in experiment and theory that will help deepen our understanding of nuclei in the context of QCD
- …